Fraction irréductibleUne fraction irréductible est une fraction pour laquelle il n’existe pas de fraction égale ayant des termes plus petits. Autrement dit, une fraction irréductible ne peut pas être simplifiée. La fraction n'est pas irréductible car 12 et 20 sont des multiples de 4 : (simplification par 4). On peut aussi écrire . La fraction est irréductible car 1 est le seul entier positif qui divise à la fois 3 et 5. On peut simplifier une fraction en divisant ses termes successivement par leurs diviseurs communs apparents (que l'on trouve en appliquant les critères de divisibilité par 2, 3, 5).
Eudoxe de CnideEudoxe de Cnide, en grec ancien (–), est un astronome, géomètre, médecin et philosophe grec. Contemporain de Platon, il tenta le premier de formuler une théorie sur le mouvement des planètes. Ses travaux sont connus d’Archimède. Né à Cnide, en Carie (Asie Mineure) dans une famille fort pauvre, il apprend la géométrie auprès du pythagoricien Archytas (vers ) et la médecine auprès de Philistion de Sicile. À 23 ans, il se rend à Athènes, peut-être chez les cyrénaïques, dont il partageait les idées morales.
Équation de Pell-Fermatthumb|Pierre de Fermat (1601-1665) affirme que l'équation de Pell-Fermat possède toujours une infinité de solutions si m = ±1, sans savoir que Bhāskara II (1114-1185) avait fait de même. En mathématiques et plus précisément en arithmétique, l'équation de Pell-Fermat est une équation diophantienne polynomiale quadratique. Si n est un entier positif qui n'est pas un carré parfait et m un entier non nul, l'équation prend la forme suivante : Les solutions recherchées sont les solutions telles que x et y soient des valeurs entières.
Special right triangleA special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio.
Racine carrée de cinqEn mathématiques, la racine carrée de cinq, notée ou 5, est un nombre réel remarquable ; c'est l'unique réel positif dont le carré est égal à 5. Il vaut approximativement 2,236. C'est un irrationnel quadratique et un entier quadratique (entier algébrique de degré 2). le nombre 5 ayant deux racines carrées réelles, devrait se prononcer « racine carrée positive de cinq », mais il se prononce habituellement « racine carrée de cinq », voire « racine de cinq » pour simplifier. Se prononçait aussi « radical de cinq ».
Racine carrée de troisLa racine carrée de trois, notée ou 3, est, en mathématiques, le nombre réel positif dont le carré est 3 exactement. Elle vaut approximativement et une bonne approximation fractionnaire en est 97/56 (à 10 près). On l’appelle parfois constante de Théodore ,Théodore de Cyrène ayant démontré son irrationalité. le nombre 3 ayant deux racines carrées réelles, devrait se prononcer racine carrée positive de 3, mais on le prononce simplement racine carrée de 3, voire racine de 3 pour simplifier.
Extraction de racine carréeEn algorithmique et en analyse numérique, l'extraction de racine carrée est le processus qui consiste, étant donné un nombre, à en calculer la racine carrée. Il existe de nombreuses méthodes pour effectuer ce calcul. C'est un cas particulier de la recherche de calcul de la racine n-ième. La racine carrée d'un nombre pouvant être un nombre irrationnel, l'extraction de racine carrée est en général approchée. L'extraction de la racine carrée d'un nombre a est identique à la résolution de l'équation x - a = 0.
Exact trigonometric valuesIn mathematics, the values of the trigonometric functions can be expressed approximately, as in , or exactly, as in . While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 90°.
Śulba-SūtrasLes Śulba-Sūtras sont des annexes des Vedas décrivant les règles de réalisation des autels sacrificiels pour certains rituels védiques. Ils présentent à cette fin de nombreuses constructions géométriques qui révèlent des connaissances mathématiques élaborées, en particulier celle de ce que nous appelons aujourd'hui le théorème de Pythagore. Les Śulba-Sūtras font partie des Kalpa-Sūtras, manuels consacrés aux pratiques rituelles védiques formant l'un des six Vedangas (appendices du Veda), et plus précisément des Śrauta-Sūtras, ceux de ces manuels qui traitent des rites sacrificiels.
Nombre d'argentvignette|Nombre d'argent dans l'octogone régulier L'appellation nombre d'argent , ou proportion d'argent, a été proposée pour diverses généralisations du nombre d'or ; la plus courante est celle qui fait du nombre d'argent le deuxième nombre métallique. Le nombre d'argent, noté ou est égal à () ; c'est l'unique solution positive de l'équation . Il peut aussi être écrit comme la fraction continue purement périodique [] : ou comme radical imbriqué infini .