60 (nombre)Le nombre 60 (soixante) est l'entier naturel qui suit 59 et qui précède 61.
5 (nombre)5 (cinq) est l'entier naturel qui suit 4 et qui précède 6. Le nombre cinq correspond au nombre normal de doigts d'une main ou d'un pied humains. Le préfixe du Système international pour (10) est péta (P), et pour son inverse, 10, femto (f). La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre cinq. Cinq (chiffre) Le chiffre « cinq », symbolisé « 5 », est le chiffre arabe servant notamment à signifier le nombre cinq.
72 (nombre)Le nombre 72 (septante-deux ou soixante-douze) est l'entier naturel qui suit 71 et qui précède 73. Le nombre 72 est : le quatrième nombre à être quatre fois brésilien (ou 4-brésilien) car 72 = 6611 = 4417 = 3323 = 2235, la somme de quatre nombres premiers consécutifs (13 + 17 + 19 + 23) et de six nombres premiers consécutifs (5 + 7 + 11 + 13 + 17 + 19), un nombre Harshad, un nombre oblong, la mesure en degrés des angles au centre d'un pentagone régulier, un nombre hautement totient : il y a 17 solutions à l'équation φ(x) = 72 (φ étant l'indicatrice d'Euler ou fonction totient)), plus que pour tout entier plus petit que 72.
Nombre harshadEn mathématiques récréatives, un nombre harshad, ou nombre de Niven, est un entier naturel qui est divisible par la somme de ses chiffres dans une base donnée. En base b, tous les nombres de 0 à b et toutes les puissances de b sont des nombres harshad, mais ils suivent ensuite une répartition similaire à celle des nombres premiers. Ils semblerait que ces nombres aient été considérés pour la première fois par le mathématicien indien D. R. Kaprekar dans un texte de 1955 sous le nom de "multidigital numbers" .
8 (nombre)8 (huit) est l'entier naturel qui suit 7 et qui précède 9. Le préfixe du Système international pour est yotta (Y), et pour son inverse yocto (y). « 8 » est un nombre composé, ses diviseurs propres sont 1, 2, et 4. C'est une puissance de deux 2, ou 2 élevé au cube, c'est aussi le troisième nombre puissant. C'est un cube parfait (2 = 8) et le produit des 3 premières puissances de 2 (2×2×2 = 8). « 8 » est la base du système octal, qui est principalement utilisé avec les ordinateurs. En octal, un chiffre représente trois bits.
6 (nombre)6 (six) est l'entier naturel qui suit 5 et qui précède 7. La plupart des alphabets possèdent un chiffre pour signifier le nombre six, notamment dans le cadre du système de numération indo-arabe. Six (chiffre) Le chiffre « six », symbolisé « 6 », est le chiffre arabe servant notamment à signifier le nombre six dans le monde occidental. Le chiffre « 6 » n'est pas le seul utilisé dans le monde. Un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, au sein même de la numération indo-arabe.
23 (nombre)Le nombre 23 (vingt-trois) est l'entier naturel qui suit 22 et qui précède 24. Le nombre 23 est : le neuvième nombre premier (cousin avec 19 et sexy avec 17 et avec 29) ; un nombre premier factoriel ; le septième nombre premier non brésilien ; un nombre premier de Sophie Germain ; un nombre premier sûr ; un nombre premier supersingulier un nombre de Woodall ; un nombre de Smarandache-Wellin ; un nombre premier long ; un nombre premier de Pillai ; le plus petit entier n > 0 tel que Z[e] ne soit pas principal ; le seul entier naturel avec 239 à ne pas être somme de 8 cubes (voir problème de Waring); le nombre de personnes que l'on doit réunir pour avoir au moins une chance sur deux que deux personnes de ce groupe aient leur anniversaire le même jour (voir le Paradoxe des anniversaires) ; un nombre de Wedderburn-Etherington ; la somme des produits des quatre premiers entiers par leur factorielle .
PrimorielleEn théorie des nombres, la primorielle d'un entier naturel , notée ou , est le produit des nombres premiers inférieurs ou égaux à . Par exemple, la primorielle de 10 est : Ces nombres ont été ainsi nommés par Harvey Dubner. L'idée de multiplier des nombres premiers consécutifs apparaît dans la démonstration d'Euclide de l'infinité des nombres premiers ; on l'utilise pour montrer l'existence d'un nombre premier plus grand que tout nombre premier donné : tout diviseur premier du nombre d'Euclide est en effet strictement plus grand que .
4 (nombre)4 (quatre) est l'entier naturel qui suit 3 et qui précède 5. Le préfixe du Système international pour 4 est tétra. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre quatre. Quatre (chiffre) Le chiffre « quatre », symbolisé « 4 », est le chiffre arabe servant notamment à signifier le nombre quatre. Le chiffre « 4 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.
2 (nombre)2 (deux) est l'entier naturel qui suit 1 et qui précède 3. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre deux. Deux (chiffre) Le chiffre « deux », symbolisé « 2 », est le chiffre arabe servant notamment à signifier le nombre deux. Le chiffre « 2 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.