Tropical semiringIn idempotent analysis, the tropical semiring is a semiring of extended real numbers with the operations of minimum (or maximum) and addition replacing the usual ("classical") operations of addition and multiplication, respectively. The tropical semiring has various applications (see tropical analysis), and forms the basis of tropical geometry. The name tropical is a reference to the Hungarian-born computer scientist Imre Simon, so named because he lived and worked in Brazil.
Notation positionnelleLa notation positionnelle est un procédé d'écriture des nombres, dans lequel chaque position d'un chiffre ou symbole est reliée à la position voisine par un multiplicateur, appelé base du système de numération. Chaque position peut être renseignée par un symbole (notation sans base auxiliaire) ou par un nombre fini de symboles (notation avec base auxiliaire). La valeur d'une position est celle du symbole de position ou celle de la précédente position apparente multipliée par la base.
Near-ringIn mathematics, a near-ring (also near ring or nearring) is an algebraic structure similar to a ring but satisfying fewer axioms. Near-rings arise naturally from functions on groups. A set N together with two binary operations + (called addition) and ⋅ (called multiplication) is called a (right) near-ring if: N is a group (not necessarily abelian) under addition; multiplication is associative (so N is a semigroup under multiplication); and multiplication on the right distributes over addition: for any x, y, z in N, it holds that (x + y)⋅z = (x⋅z) + (y⋅z).
Objet libreEn mathématiques, la notion d'objet libre est l'un des concepts de base de l'algèbre générale. Elle appartient à l'algèbre universelle, car elle s'applique à tous les types de structures algébriques (avec des opérations finitaires). Elle se formule plus généralement dans le langage de la théorie des catégories : le foncteur « objet libre » est l'adjoint à gauche du foncteur d'oubli. Des exemples d'objets libres sont les groupes libres, les groupes abéliens libres, les algèbres tensorielles...
IdempotenceEn mathématiques et en informatique, l'idempotence signifie qu'une opération a le même effet qu'on l'applique une ou plusieurs fois. Par exemple, la valeur absolue est idempotente : , les deux membres étant égaux à 5. On retrouve ce concept en algèbre générale, en particulier dans la théorie des opérateurs de projection et des opérateurs de clôture, mais aussi en informatique, en particulier en programmation fonctionnelle. Un élément x d'un magma (M, •) est dit idempotent si : x • x = x.
ValuationEn mathématiques, plus particulièrement en géométrie algébrique et en théorie des nombres, une valuation, ou valuation de Krull, est une mesure de la multiplicité. La notion est une généralisation de la notion de degré ou d'ordre d'annulation d'un polynôme formel en algèbre, du degré de divisibilité par un nombre premier en théorie des nombres, de l'ordre d'un pôle en analyse complexe ou du nombre de points de contact entre deux variétés algébriques en géométrie algébrique.
SemifieldIn mathematics, a semifield is an algebraic structure with two binary operations, addition and multiplication, which is similar to a field, but with some axioms relaxed. The term semifield has two conflicting meanings, both of which include fields as a special case. In projective geometry and finite geometry (MSC 51A, 51E, 12K10), a semifield is a nonassociative division ring with multiplicative identity element. More precisely, it is a nonassociative ring whose nonzero elements form a loop under multiplication.
Zero elementIn mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. An additive identity is the identity element in an additive group. It corresponds to the element 0 such that for all x in the group, 0 + x = x + 0 = x. Some examples of additive identity include: The zero vector under vector addition: the vector of length 0 and whose components are all 0. Often denoted as or .
Développement décimal de l'unitéEn mathématiques, le développement décimal périodique qui s'écrit 0,999..., que l'on dénote encore par ou ou , représente un nombre réel dont on peut montrer que c'est le nombre 1. En d'autres termes, les deux notations 0,999... et 1 sont deux notations différentes pour le même nombre. Les démonstrations mathématiques de cette identité ont été formulées avec des degrés variés de rigueur mathématique, et selon les préférences relatives à la définition des nombres réels, les hypothèses sous-jacentes, le contexte historique et le public visé.
Corps à un élémentEn mathématiques, et plus précisément en géométrie algébrique, le corps à un élément est le nom donné de manière quelque peu fantaisiste à un objet qui se comporterait comme un corps fini à un seul élément, si un tel corps pouvait exister. Cet objet est noté F1, ou parfois Fun. L'idée est qu'il devrait être possible de construire des théories dans lesquelles les ensembles et les lois de composition (qui constituent les bases de l'algèbre générale) seraient remplacés par d'autres objets plus flexibles.