Indicative conditionalIn natural languages, an indicative conditional is a conditional sentence such as "If Leona is at home, she isn't in Paris", whose grammatical form restricts it to discussing what could be true. Indicatives are typically defined in opposition to counterfactual conditionals, which have extra grammatical marking which allows them to discuss eventualities which are no longer possible. Indicatives are a major topic of research in philosophy of language, philosophical logic, and linguistics.
Logical formIn logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.
SyllogismeEn logique, le syllogisme est un raisonnement logique mettant en relation au moins trois propositions : deux ou plus d'entre elles, appelées « prémisses », conduisent à une « conclusion ». Aristote a été le premier à le formaliser dans son Organon. Ces propositions sont généralement exprimées avec uniquement des prédicats unaires et relèvent donc de la logique monadique du premier ordre.
Correction (logique)En logique, la forme d'une argumentation déductive est correcte si et seulement si elle est valide et que toutes ses prémisses sont effectivement vraies. En logique formelle, un système logique est correct si on peut lui associer une sémantique (on dit aussi un modèle) qui le justifie. La correction indique donc que les règles d’un tel système mettent en œuvre des raisonnements qui font du sens, puisqu'on peut les interpréter. Le terme de correction peut ici être pris dans son sens de qualité de ce qui est correct.
Logique non monotoneUne logique non-monotone est une logique formelle dans laquelle la base de faits inférés peut ne pas croître et même parfois décroître. En effet, la plupart des logiques formelles sont monotones, ce qui signifie qu'ajouter un fait ou un axiome à un ensemble de faits ou d'axiomes n'enlève pas de faits à cet ensemble. Autrement dit, cela signifie qu'ajouter une nouvelle connaissance à un système ne fera qu'augmenter les faits inférés dans ce système.
Fonction NON-OULa fonction OU-NON (NOR en anglais) est un opérateur logique de l'algèbre de Boole. À deux opérandes, qui peuvent avoir chacun la valeur VRAI ou FAUX, il associe un résultat qui a lui-même la valeur VRAI seulement si les deux opérandes ont la valeur FAUX. Cette fonction logique correspond aux mots français ni... ni, car la phrase ni A ni B est vraie si et seulement si les phrases A et B sont toutes les deux fausses ! On peut utiliser les symboles d'après les Lois de De Morgan Une lampe s'allume, sauf si l'on appuie sur « a » ou « b » ou « a » et « b » et seulement dans ces cas-là.
PrémisseUne prémisse est une proposition, une affirmation avancée en support à une conclusion. Le terme de prémisse vient du latin praemissa, sous-entendu sententia, proposition mise en avant, de prae, en avant, et mittere, envoyer. Dans un syllogisme, les deux premières prémisses s'appellent la majeure et la mineure. La prémisse est toujours avancée en support à la conclusion. Aristote a déclaré que tout argument logique pourrait être réduit à deux prémisses et une conclusion.
Méthode des tableauxvignette|200px|Représentation graphique d'un tableau propositionnel partiellement construit En théorie de la démonstration, les tableaux sémantiques sont une méthode de résolution du problème de la décision pour le calcul des propositions et les logiques apparentées, ainsi qu'une méthode de preuve pour la logique du premier ordre. La méthode des tableaux peut également déterminer la satisfiabilité des ensembles finis de formules de diverses logiques. C'est la méthode de preuve la plus populaire pour les logiques modales (Girle 2000).
Logique épistémiqueLa logique épistémique est une logique modale qui permet de raisonner à propos de la connaissance d'un ou plusieurs agents. Elle permet aussi de raisonner sur les connaissances des connaissances des autres agents, etc. Son nom est tiré du nom grec epistḗmē qui signifie « connaissance » (du verbe epístamai « savoir »), d'où vient aussi le mot épistémologie. L'application de la logique épistémique à l'économie a été promue par Robert Aumann, Prix Nobel d'économie 2005. Elle a été introduite par et Jaakko Hintikka.
Modus tollensEn logique propositionnelle, le modus tollens (aussi nommé modus tollendo tollens, du Latin : « mode qui, en niant, nie ») est une forme d'argument valide et une règle d'inférence. Celui-ci est une application de la vérité générale selon laquelle, si une proposition est vraie, alors il en est de même pour sa proposition contraposée. Les premiers à décrire explicitement le modus tollens étaient les stoïciens. La règle d'inférence modus tollens est l'inférence selon laquelle « P implique Q » et la négation du conséquent Q entraînent la négation de l'antécédent P.