Concepts associés (18)
Théorie des représentations
La théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Algèbre d'un groupe fini
En mathématiques, l'algèbre d'un groupe fini est un cas particulier d'algèbre d'un monoïde qui s'inscrit dans le cadre de la théorie des représentations d'un groupe fini. Une algèbre d'un groupe fini est la donnée d'un groupe fini, d'un espace vectoriel de dimension l'ordre du groupe et d'une base indexée par le groupe. La multiplication des éléments de la base est obtenue par la composition des index à l'aide de la loi du groupe, elle est prolongée sur toute la structure par linéarité.
Représentation régulière
En mathématiques et plus précisément en théorie des groupes, les représentations régulières (gauche et droite) d'un groupe G sont les représentations de G associées aux deux actions (à gauche et à droite) de G sur lui-même par translation. Si G est un groupe fini ce sont, pour un corps fixé K, deux actions linéaires de G sur le K-espace vectoriel KG des applications de G dans K. Si G est un groupe localement compact, ce sont deux représentations continues unitaires de G sur un certain espace de Hilbert inclus dans CG.
Caractère d'une représentation d'un groupe fini
En mathématiques le caractère d'une représentation d'un groupe fini est un outil utilisé pour analyser les représentations d'un groupe fini. Le caractère d'une représentation (V, ρ) d'un groupe G correspond à l'application de G dans le corps de l'espace de la représentation qui à un élément s associe la trace de l'image de s par ρ. Cette définition n'est pas compatible avec celle des caractères d'un groupe en général qui ne prend ses valeurs que dans l'ensemble des complexes non nuls.
Modular representation theory
Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field K of positive characteristic p, necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory.
Action par conjugaison
En mathématiques, et plus précisément en théorie des groupes, une action par conjugaison est un cas particulier d'action de groupe. L'ensemble sur lequel agit le groupe G est ici G lui-même. En effet, aut∘aut = aut. Les classes de conjugaison sont utilisées pour la démonstration du théorème de Wedderburn stipulant que tout corps fini est commutatif. Dans le cadre de la théorie des représentations d'un groupe fini, les classes de conjugaison sont à la base de la définition des fonctions centrales d'un groupe fini, elles servent à définir l'espace vectoriel, les caractères des représentations.
Représentation de groupe
En mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Groupe topologique
En mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Matrice de rotation
En mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Groupe des quaternions
En mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.