Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Hauteur d'un triangleEn géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
PerpendicularitéLa perpendicularité (du latin per-pendiculum, « fil à plomb ») est le caractère de deux entités géométriques qui se coupent à angle droit. La perpendicularité est une propriété importante en géométrie et en trigonométrie, branche des mathématiques fondée sur les triangles rectangles, dotés de propriétés particulières grâce à leurs deux segments perpendiculaires. En géométrie plane, deux droites sont perpendiculaires quand elles se coupent en formant un angle droit. La notion de perpendicularité s'étend à l'espace pour des droites ou des plans.
BisectionIn geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.
Triangle isocèlevignette|upright|Un triangle isocèle. En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base. Dans un triangle isocèle, les angles adjacents à la base sont égaux. Un triangle équilatéral est un cas particulier de triangle isocèle, ayant ses trois côtés de même longueur.
Angle droitDans le plan euclidien, deux droites sécantes définissent quatre angles deux à deux égaux. Lorsque ces quatre angles sont égaux, chacun forme un angle droit. Les droites sont alors dites perpendiculaires. Le terme angle droit est un calque du latin angulus rectus : rectus signifie « debout », ce qui renvoie à l'image d'une perpendiculaire à une ligne horizontale. Euclide écrivait, au , dans ses Éléments, livre I, Définition 10 : Un angle droit est donc un quart de tour, ou encore la moitié d'un angle plat.
Angle inscrit dans un demi-cercleLe théorème de géométrie qui affirme que l'angle inscrit dans un demi-cercle est droit, est appelé Théorème de Thalès en Allemagne (Satz des Thales) à partir de la toute fin du , puis dans plusieurs pays, mais assez rarement en France où, à partir à peu près de la même époque, le « théorème de Thalès » désigne un théorème tout autre, sur la proportionnalité des segments découpés sur deux droites sécantes par des droites parallèles.
Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
HypoténuseDans un triangle rectangle, le côté opposé à l'angle droit est appelé hypoténuse. Le théorème de Pythagore, parfois appelé théorème de l'hypoténuse, affirme que dans un triangle rectangle, la longueur de l'hypoténuse égale la racine carrée de la somme des carrés des longueurs des deux autres côtés, appelée parfois somme pythagoricienne de ces deux longueurs. L'hypoténuse d'un triangle rectangle est un diamètre du cercle circonscrit à celui-ci (voir angle inscrit dans un demi-cercle).
Milieu d'un segmentEn géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités. Symétrie centrale Deux points distincts A et A sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA]. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même. L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB].