Explore les méthodes de prévision de la demande, l'analyse des séries chronologiques, la prévision des tendances et l'application du modèle Holt-Hiver.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Explore les prévisions dans l'analyse des séries chronologiques, les processus de mémoire longue et les modèles ARCH pour la modélisation de la volatilité.
Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Couvre l'identification et la spécification du modèle dans l'analyse des séries chronologiques, y compris les modèles d'EI et l'estimation des moindres carrés.
Couvre la méthodologie Box-Jenkins pour construire des modèles de séries chronologiques, y compris l'identification des modèles, les calculs de variance et le diagnostic des modèles.
Explore l'analyse de séries chronologiques multivariées, la cointégration, la prévision avec les modèles ARMA, et les applications pratiques dans l'analyse des taux d'intérêt.