État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Représentation de HeisenbergEn mécanique quantique, la représentation de Heisenberg est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, les opérateurs du système évoluent avec le temps alors que le vecteur d'état quantique ne dépend pas du temps. Remarque : La représentation de Heisenberg ne doit pas être confondue avec la « mécanique des matrices », quelquefois appelée « mécanique quantique de Heisenberg ».
Mécanique quantique dans l'espace des phasesLa formulation de la mécanique quantique dans l'espace des phases place les variables de position et d'impulsion sur un pied d'égalité dans l'espace des phases. En revanche, la représentation de Schrödinger utilise soit la représentation dans l'espace des positions, soit la représentation dans celui des impulsions (voir la page espace des positions et des impulsions).
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Valeur moyenne (quantique)En mécanique quantique, la valeur moyenne, ou espérance quantique, est la valeur moyenne prédite pour le résultat d'une expérience. C'est un concept fondamental pour tous les domaines de la physique quantique. La physique quantique présente un comportement statistique fondamental : le résultat d'une mesure expérimentale ne sera pas, en général, le même si l'expérience est répétée plusieurs fois. Ce n'est que la moyenne statistique des valeurs mesurées dans un grand nombre de répétitions de l'expérience qui est une quantité reproductible.
Représentation d'interactionLa représentation d'interaction ou représentation de Dirac de la mécanique quantique est une manière de traiter les problèmes dépendant du temps. Dans la représentation d'interaction, on applique les hypothèses suivantes : On considère un hamiltonien ayant la forme suivante : où est constant dans le temps et décrit une interaction perturbative qui peut dépendre du temps. Les états propres sont dépendants du temps Les opérateurs sont aussi dépendants du temps La dynamique des états est décrite suivant la représentation de Schrödinger tandis que la dynamique des opérateurs est décrite suivant la représentation de Heisenberg.
Mécanique matricielleLa mécanique matricielle est une formulation de la mécanique quantique construite par Werner Heisenberg, Max Born et Pascual Jordan en 1925. La mécanique matricielle est la première définition complète et correcte de la mécanique quantique. Elle prolonge le modèle de Bohr en décrivant la manière dont se produisent les sauts quantiques, en interprétant les propriétés physiques des particules comme des matrices évoluant dans le temps.
Matrice densitéEn physique quantique, la matrice densité, souvent représentée par , est un objet mathématique introduit par le mathématicien et physicien John von Neumann permettant de décrire l'état d'un système physique. Elle constitue une généralisation de la formulation d'un état physique à l'aide d'un ket , en permettant de décrire des états plus généraux, appelés mélanges statistiques, que la précédente formulation ne permettait pas de décrire.
UnitaritéEn mécanique quantique, l'unitarité désigne le fait que l'évolution de la fonction d'onde au cours du temps doit être compatible avec l'interprétation probabiliste qui lui est associée. La fonction d'onde d'un système quantique, comme l'électron par exemple, permet de déterminer la probabilité de présence de celui-ci dans une petite boîte de volume centrée en par Et comme la probabilité totale de trouver le système quelque part doit être de un, il en découle qu'on doit avoir en intégrant sur tout l'espace.
Opérateur d'évolutionEn mécanique quantique, l'opérateur d'évolution est l'opérateur qui transforme l'état quantique au temps en l'état quantique au temps résultant de l'évolution du système sous l'effet de l'opérateur hamiltonien. On considère un hamiltonien composé de deux termes : où la dépendance temporelle est contenue dans . Quand , le système est complètement connu par ses kets propres et ses valeurs propres : Cet opérateur est noté et on a la relation, qui donne l'état du système au temps à partir du temps initial : où représente le ket au temps représente le ket au temps Pour le bra, on a alors la relation suivante : L'opérateur a les propriétés suivantes : C'est un opérateur linéaire est un opérateur unitaire ().