Groupe diédralEn mathématiques, le groupe diédral d'ordre 2n, pour un nombre naturel non nul n, est un groupe qui s'interprète notamment comme le groupe des isométries du plan conservant un polygone régulier à n côtés. Le groupe est constitué de n éléments correspondant aux rotations et n autres correspondant aux réflexions. Il est noté Dn par certains auteurs et D par d'autres. On utilisera ici la notation D. Le groupe D est le groupe cyclique d'ordre 2, noté C ; le groupe D est le groupe de Klein à quatre éléments.
Groupe cycliqueEn mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène, c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient Z/nZ — également noté Z ou C — de Z par le sous-groupe des multiples de n.
Théorie de GaloisEn mathématiques et plus précisément en algèbre, la théorie de Galois est l'étude des extensions de corps commutatifs, par le biais d'une correspondance avec des groupes de transformations sur ces extensions, les groupes de Galois. Cette méthode féconde, qui constitue l'exemple historique, a essaimé dans bien d'autres branches des mathématiques, avec par exemple la théorie de Galois différentielle, ou la théorie de Galois des revêtements. Cette théorie est née de l'étude par Évariste Galois des équations algébriques.
Présentation d'un groupeEn théorie des groupes, un groupe peut se définir par une présentation, autrement dit, la donnée d'un ensemble de générateurs et d'un ensemble de relations que ceux-ci vérifient. La possibilité d'une telle définition découle de ce que tout groupe est quotient d'un groupe libre. En général, une présentation d'un groupe G se note en écrivant entre crochets une liste de lettres et une liste minimale de mots sur cet alphabet, chaque mot étant censé valoir 1 dans le groupe et aucune relation n'existant entre les lettres, hormis celles-là et leurs conséquences.
Produit direct (groupes)En mathématiques, et plus particulièrement en théorie des groupes, le produit direct d'une famille de groupes est une structure de groupe qui se définit naturellement sur le produit cartésien des ensembles sous-jacents à ces groupes. Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante : le produit apparaissant dans le second membre étant calculé dans et le produit dans .
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Outer automorphism groupIn mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
Théorème de Lagrange sur les groupesvignette|Si G est le groupe des entiers modulo 8, alors {0, 4} forme un sous-groupe H. Sur l'exemple, {0, 4} contient 2 éléments et 2 divise 8. En mathématiques, le théorème de Lagrange sur les groupes énonce un résultat élémentaire fournissant des informations combinatoires sur les groupes finis. Le théorème doit son nom au mathématicien Joseph-Louis Lagrange. Il est parfois nommé théorème d'Euler-Lagrange car il généralise un théorème d'Euler sur les entiers.