Espace de suites ℓpEn mathématiques, l'espace est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. Considérons l'espace vectoriel réel R, c'est-à-dire l'espace des n-uplets de nombres réels. La norme euclidienne d'un vecteur est donnée par : Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur R, appelée la p-norme, en posant : pour tout vecteur . Pour tout p ≥ 1, R muni de la p-norme est donc un espace vectoriel normé.
Continuous linear operatorIn functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous function (topology) and Discontinuous linear map Bounded operator Suppose that is a linear operator between two topological vector spaces (TVSs). The following are equivalent: is continuous.
Espace séquentielEn mathématiques, un espace séquentiel est un espace topologique dont la topologie est définie par l'ensemble de ses suites convergentes. C'est le cas en particulier pour tout espace à base dénombrable. Soit X un espace topologique. Un sous-ensemble U de X est dit « séquentiellement ouvert » si toute suite (xn) de X qui converge vers un point de U « appartient à U à partir d'un certain rang ». Un sous-ensemble F de X est dit « séquentiellement fermé » si la convergence d'une suite (xn) de F vers x implique que x appartient à F.
Opérateur compactEn mathématiques, et plus précisément en analyse fonctionnelle, un opérateur compact est une application continue entre deux espaces vectoriels topologiques X et Y envoyant les parties bornées de X sur les parties relativement compactes de Y. Les applications linéaires compactes généralisent les applications linéaires continues de rang fini. La théorie est particulièrement intéressante pour les espaces vectoriels normés ou les espaces de Banach. En particulier, dans un espace de Banach, l'ensemble des opérateurs compacts est fermé pour la topologie forte.
Continuité uniformeEn topologie, la continuité uniforme (ou l'uniforme continuité) est une propriété plus forte que la continuité, et se définit dans les espaces métriques ou plus généralement les espaces uniformes. Contrairement à la continuité, la continuité uniforme n'est pas une notion « purement topologique » c'est-à-dire ne faisant intervenir que des ouverts : sa définition dépend de la distance ou de la structure uniforme. Le contexte typique de la définition de la continuité uniforme est celui des espaces métriques. N.
Opérateur de FredholmEn mathématiques, l'opérateur de Fredholm est un concept d'analyse fonctionnelle qui porte le nom du mathématicien suédois Ivar Fredholm (1866-1927). Il s'agit d'un opérateur borné L entre deux espaces de Banach X et Y ayant un noyau de dimension finie et une image de codimension finie. On peut alors définir l'indice de l'opérateur comme Sous ces hypothèses, l'espace image de L est fermé (il admet même un supplémentaire topologique).
Bornivorous setIn functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of . Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces.
Norme d'opérateurEn mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖.
Multiplication operatorIn operator theory, a multiplication operator is an operator Tf defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is, for all φ in the domain of Tf, and all x in the domain of φ (which is the same as the domain of f). This type of operator is often contrasted with composition operators. Multiplication operators generalize the notion of operator given by a diagonal matrix.
Ultrabornological spaceIn functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck (Grothendieck [1955, p. 17] "espace du type (β)"). Let be a topological vector space (TVS). A disk is a convex and balanced set.