Concepts associés (51)
Loi Gamma
En théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Asymétrie (statistiques)
En théorie des probabilités et statistique, le coefficient d'asymétrie (skewness en anglais) correspond à une mesure de l’asymétrie de la distribution d’une variable aléatoire réelle. C’est le premier des paramètres de forme, avec le kurtosis (les paramètres basés sur les moments d’ordre 5 et plus n’ont pas de nom attribué). En termes généraux, l’asymétrie d’une distribution est positive si la queue de droite (à valeurs hautes) est plus longue ou grosse, et négative si la queue de gauche (à valeurs basses) est plus longue ou grosse.
Méthode de la transformée inverse
La méthode de la transformée inverse est une méthode permettant d'échantillonner une variable aléatoire X de loi donnée à partir de l'expression de sa fonction de répartition F et d'une variable uniforme sur . Cette méthode repose sur le principe suivant, parfois connu sous le nom de théorème de la réciproque : soient F une fonction de répartition, Q la fonction quantile associée, et U une variable uniforme sur . Alors, la variable aléatoire X = Q(U) a pour fonction de répartition F.
Loi du χ²
En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Quantile
vignette|Densité de probabilité d'une loi normale de moyenne μ et d'écart-type σ. On montre ici les trois quartiles Q1, Q2, Q3. L'aire sous la courbe rouge est la même dans les intervalles (−∞,Q1), (Q1,Q2), (Q2,Q3), et (Q3,+∞). La probabilité d'être dans chacun de ces intervalles est de 25%. En statistiques et en théorie des probabilités, les quantiles sont les valeurs qui divisent un jeu de données en intervalles de même probabilité égale. Il y a donc un quantile de moins que le nombre de groupes créés.
Loi de puissance
La loi de puissance est une relation mathématique entre deux quantités. Si une quantité est la fréquence d'un évènement et l'autre est la taille d'un évènement, alors la relation est une distribution de la loi de puissance si les fréquences diminuent très lentement lorsque la taille de l'évènement augmente. En science, une loi de puissance est une relation entre deux quantités x et y qui peut s'écrire de la façon suivante : où a est une constante dite constante de proportionnalité, k, valeur négative, est une autre constante, dite exposant, puissance, indice ou encore degré de la loi et x nombre réel strictement positif.
Loi de Weibull
En théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Loi bêta
Dans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Loi de Poisson
En théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi de Pareto
En théorie des probabilités, la loi de Pareto, d'après Vilfredo Pareto, est un type particulier de loi de puissance qui a des applications en sciences physiques et sociales. Elle permet notamment de donner une base théorique au « principe des 80-20 », aussi appelé principe de Pareto. Soit la variable aléatoire X qui suit une loi de Pareto de paramètres (x,k), avec k un réel positif, alors la loi est caractérisée par : Les lois de Pareto sont des lois continues.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.