Catégorie des modulesEn mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
Endomorphism ringIn mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Annulateur (théorie des modules)In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of S. Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal.
Produit tensoriel de deux modulesLe produit tensoriel de deux modules est une construction en théorie des modules qui, à deux modules sur un même anneau commutatif unifère A, assigne un module. Le produit tensoriel est très important dans les domaines de l'analyse fonctionnelle, de la topologie algébrique et de la géométrie algébrique. Le produit tensoriel permet en outre de ramener l'étude d'applications bilinéaires ou multilinéaires à des applications linéaires.
Module simpleUn module M sur un anneau A est dit simple ou irréductible si M n'est pas le module nul et il n'existe pas de sous-modules de M en dehors de {0} et M. Les Z-modules simples sont les groupes abéliens simples, c'est-à-dire les groupes cycliques d'ordre premier. Les espaces vectoriels simples (sur un corps non nécessairement commutatif) sont les droites vectorielles. Étant donné un anneau A et I un idéal à gauche non nul de A, I est un A-module simple si et seulement si I est un idéal minimal à gauche.
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Lemme de NakayamaLe lemme de Nakayama est un résultat fondamental d'algèbre commutative. Il doit son origine à , et Wolfgang Krull. Un énoncé général est le suivant : La démonstration de cet énoncé général se ramène à celle du cas particulier N = 0, c'est pourquoi le lemme de Nakayama est souvent énoncé sous cette forme : Le corollaire suivant est parfois également énoncé sous le nom de « lemme de Nakayama » : (En effet, pour tout élément a de R, 1 + a est inversible.) Soit une famille génératrice de M. Il existe des tels que pour tout i, .
Lemme de SchurEn mathématiques et plus précisément en algèbre linéaire, le lemme de Schur est un lemme technique utilisé particulièrement dans la théorie de la représentation des groupes. Il a été démontré en 1907 par Issai Schur dans le cadre de ses travaux sur la théorie des représentations d'un groupe fini. Ce lemme est à la base de l'analyse d'un caractère d'une représentation d'un groupe fini ; il permet, par exemple, de caractériser les groupes abéliens finis.
ÉpimorphismeEn mathématiques, le terme « épimorphisme » peut avoir deux sens. 1) En théorie des catégories, un épimorphisme (aussi appelé epi) est un morphisme f : X → Y qui est simplifiable à droite de la manière suivante: g1 o f = g2 o f implique g1 = g2 pour tout morphisme g1, g2 : Y → Z. Suivant ce diagramme, on peut voir les épimorphismes comme des analogues aux fonctions surjectives, bien que ce ne soit pas exactement la même chose. Le dual d'un épimorphisme est un monomorphisme (c'est-à-dire qu'un épimorphisme dans une catégorie C est un monomorphisme dans la catégorie duale Cop).
Théorèmes d'isomorphismeEn mathématiques, les trois théorèmes d'isomorphisme fournissent l'existence d'isomorphismes dans le cadre de la théorie des groupes. Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment « Anneau quotient », « Algèbre universelle » et « Groupe à opérateurs ». Le premier théorème d'isomorphisme affirme qu'étant donné un morphisme de groupes , on peut rendre injectif en quotientant par son noyau Ker f, qui est un sous-groupe normal de G.