Monstrous moonshineEn mathématiques, monstrous moonshine est un terme anglais conçu par John Horton Conway et Simon P. Norton en 1979, utilisé pour décrire la connexion, alors totalement inattendue, entre le groupe Monstre M et les formes modulaires (en particulier la fonction j). Précisément, Conway et Norton, suivant une observation initiale de John McKay, trouvèrent que le développement de Fourier de (, où désigne le ) pouvait être exprimé en termes de combinaisons linéaires des dimensions des représentations irréductibles de M () où et Conway et Norton formulèrent des conjectures concernant les fonctions obtenues en remplaçant les traces sur l'élément neutre par les traces sur d'autres éléments g de M.
Projective linear groupIn mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Groupe simpleEn mathématiques, un groupe simple est un groupe non trivial qui ne possède pas de sous-groupe distingué autre que lui-même et son sous-groupe trivial. Un groupe est dit simple s'il a exactement deux sous-groupes distingués : ( étant l’élément neutre du groupe) et lui-même. Quelques exemples de groupes simples : Les seuls groupes abéliens simples sont les groupes finis d'ordre premier (ces groupes sont cycliques). Le groupe SO_3(R) des matrices spéciales orthogonales d'ordre 3 à coefficients réels est simple.
John Horton ConwayJohn Horton Conway, né le à Liverpool et mort le à New Brunswick (New Jersey), est un mathématicien britannique. Il s'est intéressé aux théories des groupes finis, des nœuds, des nombres, des jeux et du codage. Né en 1937 en Angleterre, John Horton Conway s'intéresse très tôt aux mathématiques et décide de devenir mathématicien dès l'âge de 11 ans. Il étudie les mathématiques à Cambridge, au Gonville and Caius College, et obtient son Bachelor of Arts en 1959.
Groupe de MathieuEn mathématiques, les groupes de Mathieu sont cinq groupes simples finis découverts par le mathématicien français Émile Mathieu. Ils sont habituellement perçus comme des groupes de permutations sur n points (où n peut prendre les valeurs 11, 12, 22, 23 ou 24) et sont nommés M. Les groupes de Mathieu ont été les premiers groupes sporadiques découverts. Les groupes M et M sont 5-transitifs, les groupes M et M sont 4-transitifs et M est 3-transitif. Cette transitivité est même stricte pour M et M.
Outer automorphism groupIn mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Groupes de ConwayEn mathématiques, les groupes de Conway Co, Co et Co sont trois groupes sporadiques découverts par John Horton Conway en 1968. Tous sont intimement liés au réseau de Leech Λ. Le plus grand, Co, d'ordre , est obtenu en quotientant le groupe des automorphismes de Λ par son centre, qui est constitué des matrices scalaires ±1. Les groupes Co (d'ordre ) et Co (d'ordre ) sont constitués des automorphismes de Λ fixant un vecteur de réseau de type 2 et un vecteur de type 3 respectivement.
Classification des groupes simples finisEn mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs.
Réseau de LeechLe réseau de Leech est un réseau remarquable dans l'espace euclidien de dimension 24. Il est relié au code de Golay. Ernst Witt le découvre en 1940 mais ne publie pas cette découverte qui sera finalement attribuée à John Leech en 1965. Le réseau de Leech est caractérisé comme étant le seul pair en dimension 24 qui ne contient pas de racines, c'est-à-dire de vecteur v tel que (v,v)=2. Il a été construit par John Leech. Le groupe des automorphismes du réseau de Leech est le groupe de Conway Co0. Il y a exactement 24 .
J-invariantLe j-invariant, parfois appelé fonction j, est une fonction introduite par Felix Klein pour l'étude des courbes elliptiques, qui a depuis trouvé des applications au-delà de la seule géométrie algébrique, par exemple dans l'étude des fonctions modulaires, de la théorie des corps de classes et du monstrous moonshine. On travaille dans le . Soient quatre points distincts , leur birapport est : Cette quantité est invariante par homographies du plan, mais dépend de l'ordre des quatre nombres considérés.