Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Espace de LindelöfEn mathématiques, un espace de Lindelöf est un espace topologique dont tout recouvrement ouvert possède un sous-recouvrement dénombrable. Cette condition est un affaiblissement de la quasi-compacité, dans laquelle on demande l'existence de sous-recouvrements finis. Un espace est dit héréditairement de Lindelöf si tous ses sous-espaces sont de Lindelöf. Il suffit pour cela que ses ouverts le soient. Les espaces de Lindelöf sont nommés d'après le mathématicien finlandais Ernst Leonard Lindelöf.
Topologie cofinieLa topologie cofinie est la topologie que l'on peut définir sur tout ensemble X de la manière suivante : l'ensemble des ouverts est constitué de l'ensemble vide et parties de X cofinies, c'est-à-dire dont le complémentaire dans X est fini. Formellement, si l'on note τ la topologie cofinie sur X, on a : ou plus simplement, en définissant la topologie via les fermés : les fermés de X sont X et ses parties finies. La topologie induite sur une partie Y de X est la topologie cofinie sur Y.
Compacité (mathématiques)En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le théorème des bornes généralisé ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact.
Topologie de SierpińskiIn mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Espace séparéEn mathématiques, un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome T2 au sein des axiomes de séparation. L'appellation fait référence à Felix Hausdorff, mathématicien allemand et l'un des fondateurs de la topologie, qui avait inclus cette condition dans sa définition originale d'espace topologique.
Indiscernabilité topologiqueIn topology, two points of a topological space X are topologically indistinguishable if they have exactly the same neighborhoods. That is, if x and y are points in X, and Nx is the set of all neighborhoods that contain x, and Ny is the set of all neighborhoods that contain y, then x and y are "topologically indistinguishable" if and only if Nx = Ny. (See Hausdorff's axiomatic .) Intuitively, two points are topologically indistinguishable if the topology of X is unable to discern between the points.
Separated setsIn topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different.
Convergence simpleEn mathématiques, la convergence simple ou ponctuelle est une notion de convergence dans un espace fonctionnel, c’est-à-dire dans un ensemble de fonctions entre deux espaces topologiques. C'est une définition peu exigeante : elle est plus facile à établir que d'autres formes de convergence, notamment la convergence uniforme. Le passage à la limite possède donc moins de propriétés : une suite de fonctions continues peut ainsi converger simplement vers une fonction qui ne l'est pas.
Théorème de TykhonovLe théorème de Tychonov (ou Tychonoff) est un théorème de topologie qui affirme qu'un produit d'espaces topologiques compacts est compact au sens de la topologie produit. Il a été publié en 1930 par le mathématicien russe Andreï Nikolaïevitch Tikhonov. Il a plusieurs applications en topologie algébrique et différentielle, particulièrement en analyse fonctionnelle, pour la preuve du théorème de Banach-Alaoglu-Bourbaki et le compactifié de Stone-Čech.