Radical de JacobsonEn algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.
Module artinienEn théorie des anneaux, un module artinien (du nom d'Emil Artin) est un module vérifiant la condition de chaîne descendante. On dit qu'un module M vérifie la condition de chaîne descendante si toute suite décroissante de sous-modules de M est stationnaire. Cela équivaut à dire que tout ensemble non vide de sous-modules de M admet un élément minimal (pour la relation d'inclusion). Tout module fini est artinien. En particulier, tout groupe abélien fini est artinien (en tant que Z-module).
Anneau localEn mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.
Suite de compositionLa notion de suite de composition est une notion de théorie des groupes. Elle permet, dans un sens qui sera précisé, de considérer un groupe comme « composé » de certains de ses sous-groupes. Soient G un groupe et e son élément neutre. On appelle suite de composition de G toute suite finie (G_0, G_1, ..., G_r) de sous-groupes de G telle queet que, pour tout i ∈ {0, 1, ..., r – 1}, G_i+1 soit sous-groupe normal de G_i.Les quotients G_i/G_i+1 sont appelés les quotients de la suite. Soient Σ_1 = (G_0, G_1, ...
Nombre dualEn mathématiques et en algèbre abstraite, les nombres duaux sont une algèbre associative unitaire commutative à deux dimensions sur les nombres réels, apparaissant à partir des réels par adjonction d'un nouvel élément ε avec la propriété ε = 0 (ε est un élément nilpotent). Ils ont été introduits par William Clifford en 1873. Ils sont notamment utiles pour fournir un outil de dérivation automatique. Ils ont également des applications en physique. Tout nombre dual s'écrit de façon unique sous la forme z = a + bε avec a et b réels.
Anneau de Dedekindthumb|Richard Dedekind définit et établit les bases de la théorie des anneaux portant maintenant son nom. En mathématiques, un anneau de Dedekind est un anneau commutatif disposant de propriétés particulières (voir aussi anneau de Dedekind non commutatif). Sa formalisation initiale a pour objectif la description d'un ensemble d'entiers algébriques, ce concept est aussi utilisé en géométrie algébrique. Les anneaux de Dedekind doivent leur origine à la théorie algébrique des nombres.
Minimal prime idealIn mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes. A prime ideal P is said to be a minimal prime ideal over an ideal I if it is minimal among all prime ideals containing I. (Note: if I is a prime ideal, then I is the only minimal prime over it.) A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal.
Principal ideal ringIn mathematics, a principal right (left) ideal ring is a ring R in which every right (left) ideal is of the form xR (Rx) for some element x of R. (The right and left ideals of this form, generated by one element, are called principal ideals.) When this is satisfied for both left and right ideals, such as the case when R is a commutative ring, R can be called a principal ideal ring, or simply principal ring. If only the finitely generated right ideals of R are principal, then R is called a right Bézout ring.
Longueur d'un moduleLa longueur d'un module M sur un anneau A est un entier naturel ou l'infini. Elle généralise d'une certaine manière la notion de dimension d'un espace vectoriel sur un corps. Les modules de longueur finie ont beaucoup de particularités généralisant celles des espaces vectoriels de dimension finie. Les modules simples sont les modules M non nuls qui n'ont pas d'autres sous-modules que {0} et M. Par exemple, un espace vectoriel est simple en tant que module si et seulement si c'est une droite vectorielle.
Conditions de chaîneLes conditions de chaîne (ascendante et descendante) sont deux propriétés mathématiques sur les ordres, identifiées initialement par Emmy Noether dans le contexte de l'algèbre commutative. Sur un ensemble partiellement ordonné (V, ≤), la condition de chaîne ascendante désigne la propriété suivante : toute suite croissante (xn)n ∈ N d'éléments de V est stationnaire, c'est-à-dire constante à partir d'un certain rang (il existe un entier N tel que pour tout n ≥ N, xn = xN) ou également la propriété (équivalente car il s'agit d'une relation d'ordre) V ne contient pas de suite infinie strictement croissante.