Théorie géométrique de la mesureEn mathématiques, la théorie géométrique de la mesure (ou théorie de la mesure géométrique) est l'étude des propriétés géométriques de la mesure d'ensembles (typiquement dans un espace euclidien). Elle a été fondée par Herbert Federer. L'idée est de résoudre certains problèmes géométrique en les formulant dans le cadre de l'analyse fonctionnelle, facilitant leur résolution. La théorie de la mesure géométrique est connue pour intervenir efficacement dans la résolution du problème de Plateau qui consiste à trouver une surface d'aire minimale avec des contraintes sur les bords de celle-ci.
Théorème d'extension de CarathéodoryEn théorie de la mesure, le théorème d'extension de Carathéodory est un théorème fondamental, qui est à la base de la construction de la plupart des mesures usuelles. Constitué par généralisation à un cadre abstrait des idées fondant la construction de la mesure de Lebesgue, et exposé sous diverses variantes, il est également mentionné par certains auteurs sous les noms de théorème de Carathéodory-Hahn ou théorème de Hahn-Kolmogorov (certaines sources distinguent un théorème de Carathéodory qui est l'énoncé d'existence, et un théorème de Hahn qui est l'énoncé d'unicité).
Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Tribu boréliennevignette|Normal distribution pdf. En mathématiques, la tribu borélienne (également appelée tribu de Borel ou tribu des boréliens) sur un espace topologique est la plus petite tribu sur contenant tous les ensembles ouverts. Les éléments de la tribu borélienne sont appelés des boréliens. Le concept doit son nom à Émile Borel, qui a publié en 1898 une première exposition de la tribu borélienne de la droite réelle. La tribu borélienne peut, de manière équivalente, se définir comme la plus petite tribu qui contient tous les sous-ensembles fermés de .
Felix HausdorffFelix Hausdorff est un mathématicien allemand né le à Breslau (aujourd'hui Wrocław) et mort le à Bonn. Il est l'auteur, sous le nom de Paul Mongré, de travaux philosophiques et littéraires. Considéré comme l'un des fondateurs de la topologie moderne, il contribua aussi significativement à la théorie des ensembles, à la théorie de la mesure et à l'analyse fonctionnelle. Son nom a été donné en 2007 au Centre Hausdorff pour les mathématiques de Bonn, ville où il a enseigné et s'est suicidé avec sa femme pour échapper à la déportation.