Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Corps réel closEn mathématiques, un corps réel clos est un corps totalement ordonnable dont aucune extension algébrique propre n'est totalement ordonnable. Les corps suivants sont réels clos : le corps des réels, le sous-corps des réels algébriques, le corps des réels calculables (au sens de Turing), le corps des , le corps des séries de Puiseux à coefficients réels, tout corps superréel (en particulier tout corps hyperréel).
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
ArchimédienÀ l'origine, l'énoncé de l'axiome d'Archimède est le suivant : « Pour deux grandeurs inégales, il existe toujours un multiple entier de la plus petite, supérieur à la plus grande. » Une structure algébrique est dite archimédienne si ses éléments vérifient une telle propriété. Intuitivement, la propriété d'Archimède indique que pour deux valeurs, la plus grande pourra toujours être mesurée à l'aune de la plus petite : en ajoutant un nombre fini de fois la plus petite valeur, on finira toujours par dépasser la plus grande.
Construction des nombres réelsEn mathématiques, il existe différentes constructions des nombres réels, dont les deux plus connues sont : les coupures de Dedekind, qui définissent, via la théorie des ensembles, un réel comme l'ensemble des rationnels qui lui sont strictement inférieurs ; les suites de Cauchy, qui définissent, via l'analyse, un réel comme une suite de rationnels convergeant vers lui. C'est à partir des années 1860 que la nécessité de présenter une construction des nombres réels se fait de plus en plus pressante, dans le but d'asseoir l'analyse sur des fondements rigoureux.
Nombre epsilonEn mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway.
John Horton ConwayJohn Horton Conway, né le à Liverpool et mort le à New Brunswick (New Jersey), est un mathématicien britannique. Il s'est intéressé aux théories des groupes finis, des nœuds, des nombres, des jeux et du codage. Né en 1937 en Angleterre, John Horton Conway s'intéresse très tôt aux mathématiques et décide de devenir mathématicien dès l'âge de 11 ans. Il étudie les mathématiques à Cambridge, au Gonville and Caius College, et obtient son Bachelor of Arts en 1959.
Division par zéroLa division par zéro consiste à chercher le résultat qu'on obtiendrait en prenant zéro comme diviseur. Ainsi, une division par zéro s'écrirait x/0, où x serait le dividende (ou numérateur). Dans les définitions usuelles de la multiplication, cette opération n'a pas de sens : elle contredit notamment la définition de la multiplication en tant que seconde loi de composition d'un corps, car zéro (l'élément neutre de l'addition) est un élément absorbant pour la multiplication. La division par zéro donne l'infini.
Nombre transfinivignette|Le mathématicien George Cantor (1918). Les nombres transfinis sont des nombres exposés et étudiés par le mathématicien Georg Cantor. Se fondant sur ses résultats, il a introduit une sorte de hiérarchie dans l'infini, en développant la théorie des ensembles. Un nombre entier naturel peut être utilisé pour décrire la taille d'un ensemble fini, ou pour désigner la position d'un élément dans une suite. Ces deux utilisations correspondent aux notions de cardinal et d'ordinal respectivement.