OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.
Quaternionvignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Algèbre à divisionEn mathématiques, et plus précisément en algèbre, une algèbre à division est une algèbre sur un corps avec la possibilité de diviser par un élément non nul (à droite et à gauche). Toutefois, dans une algèbre à division, la multiplication peut ne pas être commutative, ni même associative. Un anneau à division ou corps gauche, comme celui-des quaternions, est une algèbre associative à division sur son centre, ou sur un sous-corps de celui-ci. Soit A un anneau unitaire. L'élément 0 n'est pas inversible, sauf si A est nul.
Gras de tableau noirvignette|Un exemple de lettres en gras de tableau noir. Le gras de tableau noir ou du tableau noir, ou encore lettres ajourées ou lettres double barre ou blackboard gras, est un style de fonte de caractères où l’on retrouve certaines lettres avec une barre, oblique ou verticale, en double. Elle est régulièrement utilisée dans les textes de mathématiques et de physique. Les symboles décrivent généralement des ensembles de nombres. TeX, le logiciel le plus utilisé pour produire des textes mathématiques, ne possède pas cette fonte de caractères, mais l'AMS fournit le jeu de caractères.
Nombre hypercomplexeEn mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l'arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans incluant Hermann Hankel, Georg Frobenius, Eduard Study et Élie Cartan. L'étude des systèmes hypercomplexes particuliers conduit à leur représentation avec l'algèbre linéaire. Les nombres hypercomplexes sont utilisés en physique quantique pour calculer la probabilité d'un événement en tenant compte du spin de la particule.
Upletvignette|Coordonnées XYZ. Basé sur le travail d'InductiveLoad En mathématiques, un uplet (désigné aussi par liste , famille finie, ou suite finie) est une collection ordonnée finie d'objets. Plus précisément, si n est un entier naturel, alors un n-uplet, ou n-uple, ou n-liste est une collection ordonnée de n objets, appelés « composantes » ou « éléments » ou « termes » du n-uplet. En programmation informatique, on trouve une notion équivalente dans certains langages, tels que Python, Rust, OCaml, Scala, Swift ou MDX.
Algèbre sur un corpsEn mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : (A, +, ·) est un espace vectoriel sur K ; la loi × est définie de A × A dans A (loi de composition interne) ; la loi × est bilinéaire.
BiquaternionEn mathématiques, un biquaternion (ou quaternion complexe) est un élément de l'algèbre des quaternions sur les nombres complexes. Le concept d'un biquaternion fut mentionné la première fois par William Rowan Hamilton au . William Kingdon Clifford utilisa le même nom à propos d'une algèbre différente. biquaternion de Clifford Il y a aussi une autre notion de biquaternions, distincte : une algèbre de biquaternions sur un corps commutatif K est une algèbre qui est isomorphe au produit tensoriel de deux algèbres de quaternions sur K (sa dimension est 16 sur K, et non pas 8 sur R).
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.