InverseEn mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . Soit un monoïde, un ensemble muni d'une loi de composition interne associative, qu'on note , et d'un élément neutre pour noté 1. Un élément est dit inversible à gauche (respectivement inversible à droite) s'il existe un élément tel que (respectivement ).
Quaternionvignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
DistributivitéEn mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16.
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.
OrdinateurUn ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Opération (mathématiques)En mathématiques, une opération est un processus visant à obtenir un résultat à partir d'un ou plusieurs objets appelés opérandes. L'écriture d'une opération implique en général l'utilisation d'un symbole spécifique appelé opérateur. En arithmétique, les quatre opérations élémentaires (addition, soustraction, multiplication et division) sont suivies par le carré, le cube et plus généralement les opérations puissance, la racine carrée, l'exponentiation, la factorielle...
Division euclidiennethumb|Écriture de la division euclidienne de 30 par 7, le quotient est 4 et le reste 2.En mathématiques, et plus précisément en arithmétique, la division euclidienne ou division entière est une procédure de calcul qui, à deux entiers naturels appelés dividende et diviseur, associe deux autres entiers appelés quotient (quotient euclidien s'il y a ambiguïté) et reste. Initialement définie pour deux entiers naturels non nuls, elle se généralise aux entiers relatifs.
AssociativitéEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne ou loi interne sur un ensemble E est dite associative si pour tous x, y et z dans E : En notant , l'associativité se traduit par le diagramme commutatif suivant : Parmi les lois associatives, on peut citer les lois d'addition et de multiplication des nombres réels, des nombres complexes et des matrices carrées, l'addition des vecteurs, et l'intersection, la réunion d'ensembles.