Équation du second degréEn mathématiques, une équation du second degré, ou équation quadratique, est une équation polynomiale de degré 2, c'est-à-dire qu'elle peut s'écrire sous la forme : Dans cette équation, x est l'inconnue les lettres a, b et c représentent les coefficients, avec a différent de 0. a est le coefficient quadratique, b est le coefficient linéaire, et c est un terme constant où le polynome est défini sur .
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Factorisation des polynômesEn mathématiques, la factorisation d'un polynôme consiste à écrire celui-ci comme produit de polynômes. Les factorisations intéressantes sont celles permettant d'écrire le polynôme initial en produit de plusieurs polynômes non inversibles. Un polynôme non inversible pour lequel aucune factorisation de ce type n'existe s'appelle un polynôme irréductible. La décomposition d'un polynôme en produits de polynômes irréductibles existe, et a une propriété d'unicité (à un facteur inversible près), pour tout polynôme à coefficients réels ou complexes.
Matrice hessienneEn mathématiques, la matrice hessienne (ou simplement le hessien ou la hessienne) d'une fonction numérique est la matrice carrée, notée , de ses dérivées partielles secondes. Etant donnée une fonction à valeurs réelles dont toutes les dérivées partielles secondes existent, le coefficient d'indice de la matrice hessienne vaut . Autrement dit, On appelle discriminant hessien (ou simplement hessien) le déterminant de cette matrice. Le terme « hessien » a été introduit par James Joseph Sylvester, en hommage au mathématicien allemand Ludwig Otto Hesse.
Casus irreducibilisEn algèbre, le casus irreducibilis (latin pour « cas irréductible ») désigne un cas apparaissant lors de la recherche des racines réelles d'un polynôme à coefficients entiers de degré 3 ou plus : c'est celui où les racines ne peuvent s'exprimer à l'aide de radicaux réels. Le casus irreducibilis le plus connu est celui des polynômes de degré 3 irréductibles dans les rationnels (impossibles à factoriser en polynômes de degré moindre) ayant trois racines réelles, cas qui a été prouvé par Pierre Wantzel en 1843.
Décomposition en éléments simplesEn mathématiques, la décomposition en éléments simples d'une fraction rationnelle (parfois appelée décomposition en fractions partielles) est son expression comme somme d'un polynôme et de fractions J/H où H est un polynôme irréductible et J un polynôme de degré strictement inférieur à celui de H. Cette décomposition est utilisée dans le calcul intégral pour faciliter la recherche des primitives de la fonction rationnelle associée. Elle est aussi utilisée pour calculer des transformées de Laplace inverses.
Critère d'EisensteinEn mathématiques, le « critère d'Eisenstein », publié auparavant par Theodor Schönemann, donne des conditions suffisantes pour qu'un polynôme à coefficients entiers soit irréductible sur le corps des nombres rationnels. Considérons un polynôme P(X) à coefficients entiers, que l'on note Supposons qu'il existe un nombre premier p tel que : p divise ; p ne divise pas a ; p ne divise pas a. Alors P(X) est irréductible dans l'anneau des polynômes à coefficients rationnels.
Équation sextiquevignette|Fonction sextique possédant 6 zéros. Une fonction sextique possède toujours 6 zéros complexes ou réels. Le nombre de zéros complexes est égal à 6-n, où n est le nombre de zéros réels, compris entre 0 et 6. Une équation sextique est une équation polynomiale de degré 6 de la forme , où sont des coefficients réels ou complexes (ou appartenant à n'importe quel corps). On a spécifiquement . Une telle équation est obtenu à partir d'un polynôme , où est une fonction sextique de la forme , .
QuadriqueEn mathématiques, une quadrique, ou surface quadratique, est une surface satisfaisant une équation cartésienne polynomiale de degré 2 à trois variables (notées généralement x, y et z) de la forme Ces surfaces sont classifiées par une équation réduite dans un repère orthonormé adapté en géométrie euclidienne, et en neuf classes non dégénérées à transformation linéaire près en géométrie affine. On peut également les étudier dans le cadre de la géométrie projective, qui simplifie et unifie complètement les résultats.
Théorème des deux carrés de Fermatthumb|Pierre de Fermat (1601-1665). En mathématiques, le théorème des deux carrés de Fermat énonce les conditions pour qu’un nombre entier soit la somme de deux carrés parfaits (c'est-à-dire de deux carrés d’entiers) et précise de combien de façons différentes il peut l’être. Par exemple, selon ce théorème, un nombre premier impair (c'est-à-dire tous les nombres premiers sauf 2) est une somme de deux carrés parfaits si et seulement si le reste de sa division euclidienne par 4 est 1 ; dans ce cas, les carrés sont déterminés de manière unique.