SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Solide de révolutionEn géométrie, un solide de révolution est engendré par une surface plane fermée tournant autour d'un axe situé dans le même plan qu'elle et ne possédant en commun avec elle aucun point ou seulement des points de sa frontière. Parmi les solides de révolution, on peut citer : la boule ; le cylindre circulaire droit ; le cône circulaire droit ; le tore ; l'ellipsoïde (de révolution). Tout plan contenant l'axe de rotation découpe sur la surface de révolution un méridien.
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Vecteur positionEn géométrie, le vecteur position, ou rayon vecteur, est le vecteur qui sert à indiquer la position d'un point par rapport à un repère. L'origine du vecteur se situe à l'origine fixe du repère et son autre extrémité à la position du point. Si l'on note M cette position et O l'origine, le vecteur position se note . On le note aussi ou . En physique, le vecteur déplacement d'un point matériel ou d'un objet est le vecteur reliant une ancienne position à une nouvelle, donc le vecteur position final moins le vecteur position initial.
Fonction à valeurs vectoriellesEn mathématiques, une fonction à valeurs vectorielles ou fonction vectorielle est une fonction dont l'espace d'arrivée est un ensemble de vecteurs, son ensemble de définition pouvant être un ensemble de scalaires ou de vecteurs. Courbe paramétrée Un exemple classique de fonctions vectorielles est celui des courbes paramétrées, c'est-à-dire des fonctions d'une variable réelle (représentant par exemple le temps dans les applications en mécanique du point) à valeurs dans un espace euclidien, par exemple le plan usuel (on parle alors de courbes planes) ou l'espace usuel (on parle alors de courbes gauches).
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
Courbe planevignette|droite|Courbe hyperbolique. En mathématiques, plus précisément en géométrie, une courbe plane est une courbe qui est entièrement contenue dans un (unique) plan, et qui est identifiable à une fonction continue : où est un intervalle de l'ensemble des nombres réels. L' d'une courbe est aussi appelée support de la courbe. Parfois, on utilise aussi l'expression courbe pour indiquer le support d'une courbe. Une courbe sur un espace euclidien de dimension supérieure à 2 est dite plane si son support est contenu dans un plan lui-même contenu dans l'espace euclidien dans lequel elle est définie.