Espace de suites ℓpEn mathématiques, l'espace est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. Considérons l'espace vectoriel réel R, c'est-à-dire l'espace des n-uplets de nombres réels. La norme euclidienne d'un vecteur est donnée par : Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur R, appelée la p-norme, en posant : pour tout vecteur . Pour tout p ≥ 1, R muni de la p-norme est donc un espace vectoriel normé.
Norme d'opérateurEn mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖.
Spectre d'un opérateur linéaireEn mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base. En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés. Soit une algèbre de Banach unifère sur le corps des nombres complexes.
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Singular valueIn mathematics, in particular functional analysis, the singular values, or s-numbers of a compact operator acting between Hilbert spaces and , are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator (where denotes the adjoint of ). The singular values are non-negative real numbers, usually listed in decreasing order (σ1(T), σ2(T), ...). The largest singular value σ1(T) is equal to the operator norm of T (see Min-max theorem).
Topologie faibleEn mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera pour et forme linéaire sur . Soient E un espace vectoriel normé (réel ou complexe), ou plus généralement un espace vectoriel topologique et E' son dual topologique, c’est-à-dire l'ensemble des formes linéaires continues sur E.
Strictly singular operatorIn functional analysis, a branch of mathematics, a strictly singular operator is a bounded linear operator between normed spaces which is not bounded below on any infinite-dimensional subspace. Let X and Y be normed linear spaces, and denote by B(X,Y) the space of bounded operators of the form . Let be any subset. We say that T is bounded below on whenever there is a constant such that for all , the inequality holds. If A=X, we say simply that T is bounded below.
Injections de SobolevEn mathématiques, les inégalités de Sobolev sont des résultats mettant en relation des normes dont celles des espaces de Sobolev. Ces inégalités sont utilisées pour démontrer le théorème de plongement de Sobolev (injection), qui permet d'énoncer des inclusions entre certains espaces de Sobolev, mais aussi le théorème de Rellich – Kondrachov qui montre que dans des conditions légèrement plus fortes, certains espaces de Sobolev peuvent s'injecter de manière compacte dans d'autres espaces.
Lemme de RieszLe lemme de Riesz, dû au mathématicien Frigyes Riesz, est un résultat d'analyse fonctionnelle sur les sous-espaces vectoriel fermés d'un espace vectoriel normé réel. Sa principale conséquence est le théorème de Riesz, selon lequel un espace vectoriel normé réel est de dimension finie si et seulement si ses boules fermées sont compactes. Plus généralement, un espace vectoriel topologique réel séparé est de dimension finie si et seulement s'il est localement compact.
Compact operator on Hilbert spaceIn the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments.