Multiplicateur de SchurEn mathématiques, plus précisément en théorie des groupes, le multiplicateur de Schur est le deuxième groupe d'homologie d'un groupe G à coefficients entiers, Si le groupe est présenté en termes d'un groupe libre F sur un ensemble de générateurs, et d'un sous-groupe normal R engendré par un ensemble de relations sur les générateurs, de sorte que alors, par la formule d'homologie entière de Hopf, le multiplicateur de Schur est isomorphe à où [A, B] est le sous-groupe engendré par les commutateurs abab pour a
Projective linear groupIn mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Extension de groupesEn mathématiques, plus précisément en théorie des groupes, une extension de groupes est une manière de décrire un groupe en termes de deux groupes « plus petits ». Plus précisément, une extension d'un groupe Q par un groupe N est un groupe G qui s'insère dans une suite exacte courte Autrement dit : G est une extension de Q par N si (à isomorphismes près) N est un sous-groupe normal de G et Q est le groupe quotient G/N. L'extension est dite centrale si N est inclus dans le centre de G.
Groupe alternéEn mathématiques, et plus précisément en théorie des groupes, le groupe alterné de degré n, souvent noté An, est un sous-groupe distingué du groupe symétrique des permutations d'un ensemble fini à n éléments. Ce sous-groupe est constitué des permutations produits d'un nombre pair de transpositions. Une transposition est une permutation qui échange deux éléments et fixe tous les autres. Il existe un groupe alterné pour chaque entier n supérieur ou égal à 2 ; il se note habituellement An (ou parfois en écriture Fraktur) et possède n!/2 éléments.
Groupe spécial linéaireEn mathématiques, le groupe spécial linéaire de degré n sur un corps commutatif K est le groupe SL(K) des matrices carrées d'ordre n sur K dont le déterminant est égal à 1. Plus intrinsèquement, le groupe spécial linéaire d'un espace vectoriel E de dimension finie sur K est le groupe SL(E) des éléments du groupe général linéaire GL(E) dont le déterminant est égal à 1. Cette définition admet différentes généralisations : une, immédiate, sur un anneau commutatif et deux variantes sur des corps non nécessairement commutatifs, dont l'une sur des corps qui sont de dimension finie sur leur centre.
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Représentation projectiveEn mathématiques, plus précisément en théorie des représentations, une représentation projective d'un groupe sur un espace vectoriel est un homomorphisme du groupe dans le groupe projectif linéaire . Soit un groupe, un corps et un -espace vectoriel. désigne le groupe général linéaire de . On note le centre de ; il est isomorphe à . est par définition le groupe quotient : . Il existe deux définitions équivalentes d'une représentation projective de sur : un morphisme ; une application telle qu'il existe une fonction , vérifiant : .
Groupe quasi-simpleEn mathématiques, un groupe parfait G est un groupe quasi-simple si le groupe de ses automorphismes intérieurs est simple. En d'autres termes, s'il existe une suite exacte courte : où S est un groupe simple. Les groupes simples non abéliens sont quasi-simples. Les recouvrements du groupe alterné sont quasi-simples mais non simples, pour . Les sous-groupes normaux propres d'un groupe quasi-simple sont contenus dans son centre. Tout endomorphisme non trivial d'un groupe fini quasi-simple est un automorphisme.
Groupe dérivéEn mathématiques, en algèbre dans un groupe G, le groupe dérivé, noté D(G) ou [G, G], est le plus petit sous-groupe normal pour lequel le groupe quotient G/[G, G] est abélien. Le groupe dérivé de G est trivial si et seulement si le groupe G est abélien. Le groupe quotient de G par son groupe dérivé est l'abélianisé de G. Le procédé d'abélianisation permet souvent de prouver que deux groupes ne sont pas isomorphes. Il intervient aussi en géométrie.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.