Série formelleEn algèbre, les séries formelles sont une généralisation des polynômes autorisant des sommes infinies, de la même façon qu'en analyse, les séries entières généralisent les fonctions polynomiales, à ceci près que dans le cadre algébrique, les problèmes de convergence sont évités par des définitions ad hoc. Ces objets sont utiles pour décrire de façon concise des suites et pour trouver des formules pour des suites définies par récurrence via ce que l'on appelle les séries génératrices. Soit R un anneau commutatif (unifère).
Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Limite supérieure et limite inférieurevignette|upright=1.8|Exemple de recherche de limites inférieure et supérieure. La suite (x) est représentée en bleu. En mathématiques, plus précisément en analyse réelle, les limites inférieures et supérieures sont des outils d'étude des suites de nombres réels. Une telle suite n'est en général ni monotone, ni convergente. L'introduction des limites supérieure et inférieure permet de retrouver, partiellement, de telles propriétés. Il s'agit d'un cas particulier de valeurs d'adhérence de la suite.
Variable (mathématiques)Dans les mathématiques supérieures et en logique, une variable est un symbole représentant, a priori, un objet indéterminé. On peut cependant ajouter des conditions sur cet objet, tel que l'ensemble ou la collection le contenant. On peut alors utiliser une variable pour marquer un rôle dans un prédicat, une formule ou un algorithme, ou bien résoudre des équations et d'autres problèmes. Il peut s'agir d'une simple valeur, ou d'un objet mathématique tel qu'un vecteur, une matrice ou même une fonction.
Plan complexeEn mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. On associe en général le plan complexe à un repère orthonormé direct.
Exponentielle de base aEn analyse réelle, l'exponentielle de base est la fonction notée exp qui, à tout réel x, associe le réel a. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe a. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur R, prenant la valeur a en 1 et transformant une somme en produit.
Algèbre de BanachEn mathématiques, l'algèbre de Banach est une des structures fondamentales de l'analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892-1945). On explicite cette définition : une algèbre de Banach A sur le corps K = R ou C est un espace vectoriel normé complet sur K (on note la norme) muni d'une loi interne notée multiplicativement, telle que quels que soient x, y, z éléments de A et élément de K : (associativité) ; et (bilinéarité) ; (sous-multiplicativité).
Série divergenteEn mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.