Programme de LanglandsEn mathématiques, le programme de Langlands est encore, au début du , un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux représentations de certains groupes. Il a été proposé par Robert Langlands en 1967. La première étape du programme, réalisée bien avant les travaux de Langlands, peut être vue comme la théorie des corps de classes.
HypothèseUne hypothèse est une proposition ou un « dit » ou une explication que l'on se contente d'énoncer sans prendre position sur son caractère véridique, c'est-à-dire sans l'affirmer ou la nier. Il s'agit donc d'une simple supposition. Une fois énoncée, une hypothèse peut être étudiée, confrontée, utilisée, discutée ou traitée de toute autre façon jugée nécessaire, par exemple dans le cadre d'une démarche expérimentale.
Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Computer-assisted proofA computer-assisted proof is a mathematical proof that has been at least partially generated by computer. Most computer-aided proofs to date have been implementations of large proofs-by-exhaustion of a mathematical theorem. The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these computations implies the given theorem. In 1976, the four color theorem was the first major theorem to be verified using a computer program.
Nombres premiers jumeauxEn mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour le couple (2, 3), cet écart entre nombres premiers de 2 est le plus petit possible. Les plus petits nombres premiers jumeaux sont 3 et 5, 5 et 7, 11 et 13. En , les plus grands nombres premiers jumeaux connus, découverts en 2016 dans le cadre du projet de calcul distribué PrimeGrid, sont × 2 ± 1 ; ils possèdent chiffres en écriture décimale.
Méthode scientifiqueLa méthode scientifique désigne l'ensemble des canons guidant ou devant guider le processus de production des connaissances scientifiques, qu'il s'agisse d'observations, d'expériences, de raisonnements, ou de calculs théoriques. Très souvent, le terme de « méthode » engage l'idée implicite de son unicité, tant auprès du grand public que de certains chercheurs, qui de surcroît la confondent parfois avec la seule méthode hypothético-déductive.
Fonction Lvignette|Représentation de la fonction ζ de Riemann, exemple le plus classique de fonction L En mathématiques, la théorie des fonctions L est devenue une branche très substantielle, et encore largement conjecturelle, de la théorie analytique des nombres contemporaine. On y construit de larges généralisations de la fonction zêta de Riemann et même des séries L pour un caractère de Dirichlet et on y énonce de manière systématique leurs propriétés générales, qui dans la plupart des cas sont encore hors de portée d'une démonstration.
Équation fonctionnelleEn mathématiques, une équation fonctionnelle est une équation dont les inconnues sont des fonctions. De nombreuses propriétés de fonctions peuvent être déterminées en étudiant les équations auxquelles elles satisfont. D'habitude, le terme « équation fonctionnelle » est réservé aux équations qu'on ne peut pas ramener à des équations plus simples, par exemple à des équations différentielles.
Conjecture de CramérEn mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936, pronostique l'asymptotique suivante pour l'écart entre nombres premiers : où gn est le n-ième écart, pn est le n-ième nombre premier et désigne le symbole de Bachmann-Landau ; cette conjecture n'est pas démontrée à ce jour. Cramér avait auparavant, en 1920, démontré un énoncé plus faible : sous l'hypothèse de Riemann (qui elle-même n'est pas démontrée non plus).
Conjecture de Pólyathumb|right|Fonction sommatoire de la fonction de Liouville L(n) jusqu'à n = . thumb|right|Gros plan sur la fonction sommatoire de la fonction de Liouville L(n) dans la région où la conjecture de Pólya est en défaut. En théorie des nombres, la conjecture de Pólya énonce que la plupart (c'est-à-dire plus de la moitié) des entiers naturels inférieurs à un entier donné ont un nombre impair de facteurs premiers. La conjecture a été proposée par le mathématicien hongrois George Pólya en 1919.