GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
CirconférenceLa circonférence est une courbe fermée limitant une surface relativement circulaire. C'est aussi par extension la longueur de cette courbe. Le mot « circonférence » est particulièrement adapté au cas d'un disque, où elle désigne la longueur du cercle. La circonférence d'une sphère correspond à la longueur d'un grand cercle. La notion de circonférence s'applique également au cas voisin d'une ellipse, même s'il est préférable d'employer le terme périmètre, qui a l'acception plus générale de la longueur d'une ligne fermée de forme quelconque.
Aire (géométrie)thumb|L'aire du carré vaut ici 4. En mathématiques, l'aire est une grandeur relative à certaines figures du plan ou des surfaces en géométrie dans l'espace. Le développement de cette notion mathématique est lié à la rationalisation du calcul de grandeur de surfaces agricoles, par des techniques d'arpentage. Cette évaluation assortie d'une unité de mesure est aujourd'hui plutôt appelée superficie. Informellement, l'aire permet d'exprimer un rapport de grandeur d'une figure relativement à une unité, par le biais de découpages et recollements, de déplacements et retournements et de passage à la limite par approximation.
Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Ellipse (mathématiques)Infobox Polytope | nom = Ellipse | image = Ellipse infobox.gif | légende = Représentation d'une ellipse legend|texte=F et F|Foyers | type = Section conique | aire = | périmètre = | propriétés = En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
ArchimèdeArchimède de Syracuse (en grec ancien : / Arkhimếdês), né à Syracuse vers 287 av. J.-C. et mort en cette même ville en 212 av. J.-C., est un grand scientifique grec de Sicile (Grande-Grèce) de l'Antiquité, physicien, astronome, mathématicien et ingénieur. Bien que peu de détails de sa vie soient connus, il est considéré comme l'un des principaux scientifiques de l'Antiquité classique. Parmi ses domaines d'étude en physique, on peut citer l'hydrostatique , la mécanique statique, et l'explication du principe du levier.
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
TriangleEn géométrie euclidienne, un triangle est une figure plane formée par trois points (appelés sommets) et par les trois segments qui les relient (appelés côtés), délimitant un domaine du plan appelé intérieur. Lorsque les sommets sont distincts deux à deux, en chaque sommet les côtés délimitent un angle intérieur, d'où vient la dénomination de « triangle ». Le triangle est aussi le polygone le plus simple qui délimite une portion du plan et sert ainsi d'élément fondamental pour le découpage et l'approximation de surfaces.