Norme (mathématiques)En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe. La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Fonction de plusieurs variablesEn mathématiques et plus spécialement en analyse vectorielle, une fonction numérique à plusieurs variables réelles est une fonction dont l'ensemble de départ E est une partie du produit cartésien . L'ensemble d'arrivée F peut être ou . Le second cas peut se ramener au premier cas en considérant qu'il s'agit en réalité de p fonctions de dans appelées fonctions coordonnées. La fonction est donc une relation associant à chaque n-uplet x = (x, x, ...
Homothétievignette|Homothétie de centre O transformant le triangle (abc) en le triangle (a1b1c1). Une homothétie est une transformation géométrique par agrandissement ou réduction ; autrement dit, une reproduction avec changement d'échelle. Elle se caractérise par son centre, point invariant, et un rapport qui est un nombre réel. Par l'homothétie de centre O et de rapport k, le point M est transformé en un point N tel que En d'autres termes, l'homothétie laisse O fixe et envoie le point M sur un point N situé sur la droite (OM) par un agrandissement ou une réduction de rapport k.
Fonction convexevignette|upright=1.5|droite|Fonction convexe. En mathématiques, une fonction réelle d'une variable réelle est dite convexe : si quels que soient deux points et du graphe de la fonction, le segment est entièrement situé au-dessus du graphe, c’est-à-dire que la courbe représentative de la fonction se situe toujours en dessous de ses cordes ; ou si l'épigraphe de la fonction (l'ensemble des points qui sont au-dessus de son graphe) est un ensemble convexe ; ou si vu d'en dessous, le graphe de la fonction est en bosse.
Polynôme homogèneEn mathématiques, un polynôme homogène, ou forme algébrique, est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total. Par exemple le polynôme x + 2xy + 9xy est homogène de degré 5 car la somme des exposants est 5 pour chacun des monômes ; les polynômes homogènes de degré 2 sont les formes quadratiques. Les polynômes homogènes sont omniprésents en mathématiques et en physique théorique. Soit K un corps commutatif. Un polynôme homogène de degré d en n variables est un polynôme dans K[X, .
Harmonique sphériqueEn mathématiques, les harmoniques sphériques sont des fonctions harmoniques particulières, c'est-à-dire des fonctions dont le laplacien est nul. Les harmoniques sphériques sont particulièrement utiles pour résoudre des problèmes invariants par rotation, car elles sont les vecteurs propres de certains opérateurs liés aux rotations. Les polynômes harmoniques P(x,y,z) de degré l forment un espace vectoriel de dimension 2 l + 1, et peuvent s'exprimer en coordonnées sphériques (r, θ, φ) comme des combinaisons linéaires des (2 l + 1) fonctions : avec .
Semi-normeEn mathématiques, une semi-norme est une application d'un espace vectoriel dans l'ensemble des réels positifs. C'est « presque » une norme mais une propriété est manquante : la semi-norme d'un vecteur non nul peut être nulle. En analyse fonctionnelle, cette situation est relativement courante. L'espace vectoriel est un espace de fonctions d'un espace mesuré à valeurs dans les réels ou complexes. La semi-norme correspond par exemple à l'intégrale de la valeur absolue ou du module de la fonction.
Fonction linéaire (analyse)Dans les mathématiques élémentaires, les fonctions linéaires sont parmi les fonctions les plus simples que l'on rencontre. Ce sont des cas particuliers d'applications linéaires. Elles traduisent la proportionnalité. Par exemple, on dira que le prix d'un plein d'essence est fonction linéaire du nombre de litres mis dans le réservoir car : pour zéro litre, on paie zéro euro ; pour un litre, on paie 1,40 euro ; pour 2 litres on paie 2,80 euros ; pour 10 litres on paie 14 euros ; pour 100 litres on paie 140 euros ; et pour N litres, on paie 1,4 × N euros.