Del in cylindrical and spherical coordinatesThis is a list of some vector calculus formulae for working with common curvilinear coordinate systems. This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
Isomorphisme musicalEn mathématiques, plus précisément en géométrie différentielle, l'isomorphisme musical (ou isomorphisme canonique ) est un isomorphisme entre le fibré tangent et le fibré cotangent d'une variété pseudo-riemannienne induite par son tenseur métrique. Il existe des isomorphismes similaires sur les variétés symplectiques. Le terme musical fait référence à l'utilisation des symboles (bémol) et (dièse). En notation covariante et contravariante, il est également connu sous le nom d'indice d'élévation et d'abaissement.
Courbe intégralevignette|250x250px|Trois courbes intégrales pour le correspondant à l'équation différentielle dy / dx = x2 − X − 2. En mathématiques, une courbe intégrale est une courbe paramétrique qui représente une solution spécifique à une équation différentielle ordinaire ou un système d'équations. Si l'équation différentielle est représentée sous la forme d'un champ vectoriel ou d'un , les courbes intégrales correspondantes sont tangentes au champ en chaque point.
Line of forceA line of force in Faraday's extended sense is synonymous with Maxwell's line of induction. According to J.J. Thomson, Faraday usually discusses lines of force as chains of polarized particles in a dielectric, yet sometimes Faraday discusses them as having an existence all their own as in stretching across a vacuum. In addition to lines of force, J.J. Thomson—similar to Maxwell—also calls them tubes of electrostatic inductance, or simply Faraday tubes.
Sous-groupe à un paramètreUn sous-groupe à un paramètre d'un groupe de Lie réel G est un morphisme de groupes de Lie c : R → G. Plus explicitement, c est une application différentiable vérifiant : En dérivant cette relation par rapport à la variable s et en évaluant en s = 0, il vient : où Lc(t) désigne la multiplication à gauche par c(t). Un sous-groupe à un paramètre s'obtient comme orbite de l'élément neutre par un champ de vecteurs invariant à gauche de G. Un tel champ X est déterminé par sa valeur X(e) en l'élément neutre e.
Dipôle magnétiquevignette|Dipôle magnétique de la Terre Un dipôle magnétique est l'équivalent pour le champ magnétique de ce qu'est un dipôle électrostatique pour le champ électrique. Il est entièrement caractérisé par le vecteur moment magnétique (ou moment dipolaire magnétique), l'équivalent pour le magnétisme de ce qu'est le moment dipolaire pour l'électrostatique. La représentation matérielle la plus simple d'un dipôle magnétique est une boucle de courant, c'est-à-dire un courant électrique circulaire.
Vector operatorA vector operator is a differential operator used in vector calculus. Vector operators include the gradient, divergence, and curl: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: The Laplacian operates on a scalar field, producing a scalar field: Vector operators must always come right before the scalar field or vector field on which they operate, in order to produce a result.
Variété parallélisableUne variété différentielle M de classe Ck est dite parallélisable si son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel, à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme.