Groupe de TitsEn mathématiques, le groupe de Tits est un groupe simple fini d'ordre = 211 · 33 · 52 · 13 nommé en l'honneur du mathématicien Jacques Tits. C'est le sous-groupe dérivé du groupe Ree . À strictement parler, le groupe de Tits lui-même n'est pas un groupe de type de Lie et en fait, il a été quelquefois considéré comme un groupe sporadique. Le groupe de Tits peut être défini en termes de générateurs et de relations par où est le commutateur. Son multiplicateur de Schur est trivial.
G2 (mathématiques)En mathématiques, G2 est le plus petit des groupes de Lie complexes de type exceptionnel. Son algèbre de Lie est notée . G2 est de rang 2 et de dimension 14. Sa forme compacte est simplement connexe, et sa forme déployée a un groupe fondamental d'ordre 2. Son groupe d'automorphismes est le groupe trivial. Sa représentation fondamentale est de dimension 7. La forme compacte de G2 peut être décrite comme le groupe d'automorphismes de l'algèbre octonionique. (1,−1,0),(−1,1,0) (1,0,−1),(−1,0,1) (0,1,−1),(0,−1,
Groupe réductifEn mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.
Groupe MonstreEn mathématiques, le Monstre M ou groupe de Fischer-Griess F est le plus gros des 26 groupes simples sporadiques. Son ordre est 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 47 × 59 × 71 = ≈ . C'est un groupe simple, ceci signifiant qu'il n'a aucun sous-groupe normal excepté pour le sous-groupe constitué seulement de l'élément identité, et lui-même. Les groupes simples finis ont été complètement classés ; il existe 18 familles infinies dénombrables de groupes simples finis, plus 26 groupes sporadiques qui ne suivent aucun motif apparent.
Automorphisme intérieurUn automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soient G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l'automorphisme de G défini par : Pour un groupe abélien, les automorphismes intérieurs sont triviaux. Plus généralement, l'ensemble des automorphismes intérieurs de G forme un sous-groupe normal du groupe des automorphismes de G, et ce sous-groupe est isomorphe au groupe quotient de G par son centre.
Groupe simpleEn mathématiques, un groupe simple est un groupe non trivial qui ne possède pas de sous-groupe distingué autre que lui-même et son sous-groupe trivial. Un groupe est dit simple s'il a exactement deux sous-groupes distingués : ( étant l’élément neutre du groupe) et lui-même. Quelques exemples de groupes simples : Les seuls groupes abéliens simples sont les groupes finis d'ordre premier (ces groupes sont cycliques). Le groupe SO_3(R) des matrices spéciales orthogonales d'ordre 3 à coefficients réels est simple.
Groupe alternéEn mathématiques, et plus précisément en théorie des groupes, le groupe alterné de degré n, souvent noté An, est un sous-groupe distingué du groupe symétrique des permutations d'un ensemble fini à n éléments. Ce sous-groupe est constitué des permutations produits d'un nombre pair de transpositions. Une transposition est une permutation qui échange deux éléments et fixe tous les autres. Il existe un groupe alterné pour chaque entier n supérieur ou égal à 2 ; il se note habituellement An (ou parfois en écriture Fraktur) et possède n!/2 éléments.
Classification des groupes simples finisEn mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs.
Groupe de KleinEn mathématiques, le groupe de Klein est, à isomorphisme près, l'un des deux groupes à quatre éléments, l'autre étant le groupe cyclique ; c'est le plus petit groupe non cyclique. Il porte le nom du mathématicien allemand Felix Klein, qui en 1884 le désignait par « Vierergruppe » (groupe de quatre) dans son « cours sur l'icosaèdre et la résolution des équations du cinquième degré ». Le groupe de Klein est entièrement défini par le fait que les trois éléments différents de l'élément neutre e ont un ordre égal à 2 (ils sont involutifs), et que le produit de deux distincts d'entre eux est égal au troisième.
Immeuble de Bruhat-TitsEn mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis et des espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des groupes de Lie p-adiques et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres.