Quartic reciprocityQuartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x4 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x4 ≡ p (mod q) to that of x4 ≡ q (mod p). Euler made the first conjectures about biquadratic reciprocity. Gauss published two monographs on biquadratic reciprocity.
Résidu quadratiqueEn mathématiques, plus précisément en arithmétique modulaire, un entier naturel q est un résidu quadratique modulo n s'il possède une racine carrée en arithmétique modulaire de module n. Autrement dit, q est un résidu quadratique modulo n s'il existe un entier x tel que : Dans le cas contraire, on dit que q est un non-résidu quadratique modulo n Par exemple : modulo 4, les résidus quadratiques sont les entiers congrus à 2 ≡ 0 = 0 ou à (±1) = 1.
Symbole de Jacobivignette|Charles Jacobi, mathématicien à l'origine du symbole de Jacobi Le symbole de Jacobi est utilisé en mathématiques dans le domaine de la théorie des nombres. Il est nommé ainsi en l'honneur du mathématicien prussien Charles Gustave Jacob Jacobi. C'est une généralisation du symbole de Legendre. Le symbole de Jacobi est défini pour tout entier relatif et tout entier naturel impair comme produit de symboles de Legendre, en faisant intervenir la décomposition en facteurs premiers de : pour tout et tous nombres premiers impairs (non nécessairement distincts), Soient positifs impairs et entiers quelconques.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Loi de réciprocité quadratiqueEn mathématiques, en particulier en théorie des nombres, la loi de réciprocité quadratique, établit des liens entre les nombres premiers ; plus précisément, elle décrit la possibilité d'exprimer un nombre premier comme un carré modulo un autre nombre premier. Conjecturée par Euler et reformulée par Legendre, elle a été correctement démontrée pour la première fois par Gauss en 1801.
Symbole de LegendreEn théorie des nombres, le symbole de Legendre est une fonction de deux variables entières à valeurs dans {–1, 0, 1}, qui caractérise les résidus quadratiques. Il a été introduit par Adrien-Marie Legendre, au cours de ses efforts pour démontrer la loi de réciprocité quadratique. Il ne dépend donc que de la classe de a modulo p. Le cas particulier p = 2 est inclus dans cette définition mais sans intérêt : vaut 0 si a est pair et 1 sinon.