Nombre à moyenne harmonique entièreEn arithmétique, un nombre à moyenne harmonique entière est un entier strictement positif dont les diviseurs positifs ont pour moyenne harmonique un nombre entier. Autrement dit, si a1, a2, ..., an sont les diviseurs du nombre, doit être un entier. Ces nombres ont été définis par Øystein Ore en 1948 et apparaissent dans la littérature mathématique anglophone sous différents noms, en particulier, Harmonic divisor number, Ore's (harmonic) numbers, harmonic numbers, numbers with integral harmonic mean ; il ne semble pas y avoir de terminologie attestée en français.
Nombre double de MersenneEn mathématiques, un nombre double de Mersenne est un nombre de Mersenne de la forme où n est un entier strictement positif et M désigne le n-ième nombre de Mersenne. Les plus petits nombres doubles de Mersenne sont donc : M = M = 1 ; M = M = 7 ; M = M = 127 ; M = M = = 7 × 31 × 151 ; M = M = 2 147 483 647 ; M = M = = 7 × 73 × 127 × 337 × × ; M = M = . Puisqu'un nombre de Mersenne M ne peut être premier que si n est premier (condition nécessaire mais pas suffisante), un nombre double de Mersenne M ne peut être premier que si M est un nombre de Mersenne premier (ce qui nécessite avant tout que p le soit : on a vu par exemple que M et M ne sont pas premiers).
Nombre harshadEn mathématiques récréatives, un nombre harshad, ou nombre de Niven, est un entier naturel qui est divisible par la somme de ses chiffres dans une base donnée. En base b, tous les nombres de 0 à b et toutes les puissances de b sont des nombres harshad, mais ils suivent ensuite une répartition similaire à celle des nombres premiers. Ils semblerait que ces nombres aient été considérés pour la première fois par le mathématicien indien D. R. Kaprekar dans un texte de 1955 sous le nom de "multidigital numbers" .
2 (nombre)2 (deux) est l'entier naturel qui suit 1 et qui précède 3. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre deux. Deux (chiffre) Le chiffre « deux », symbolisé « 2 », est le chiffre arabe servant notamment à signifier le nombre deux. Le chiffre « 2 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.
Nombre carré centréUn nombre carré centré est un nombre figuré centré qui peut être représenté par un carré avec un point placé en son centre et tous ses autres points disposés en couches carrées concentriques de 4 points, 8 points, 12 points Ainsi, le n-ième carré centré comporte n points sur chaque rayon et sur chaque côté : {| |- align="center" | C4,1 = 1 | | | C4,2 = 1 + 4 = 5 | | | C4,3 = 5 + 8 = 13 | | | C4,4 = 13 + 12 = 25 |} Pour tout entier n ≥ 1, le n-ième carré centré a un point central et n – 1 couches carrées.
Nombre pentatopiqueUn nombre pentatopique est un nombre de la cinquième diagonale descendante du triangle de Pascal. Les premiers nombres de cette sorte sont 1, 5, 15, 35, 70, et 126. Les nombres pentatopiques sont des nombres figurés. Ils peuvent idéalement être représentés en dimension 4 par un pentachore constitué d'un empilement de tétraèdres réguliers. Le nombre pentatopique de rang n est donc la somme des n premiers nombres tétraédriques On obtient donc la formule Il n'est donc pas surprenant de les rencontrer dans la cinquième diagonale du triangle de Pascal.
7 (nombre)7 (sept) est en mathématiques l'entier naturel qui suit 6 et qui précède 8 ; c'est un nombre premier. En linguistique, le mot « sept » vient du latin septem (sept), dont la racine se retrouve dans toutes les langues indo-européennes. Le préfixe du Système international pour 1000 est zetta (Z), et pour son inverse zepto (z). Le nombre « sept » trouve de nombreuses occurrences dans les domaines scientifiques, mathématiques, astronomique, théologique, géographique, sportif ou dans les arts.
Numération japonaiseLa numération japonaise est calquée sur le modèle chinois. Les sinogrammes sont d'ailleurs restés identiques dans l'écriture kanji. Le tableau ci-dessous présente les différentes façons d'écrire les nombres en japonais. Pour le chiffre 4, « し » (shi) est moins utilisé parce qu'il se prononce de la même façon que « la mort » (死). Une fois que l'on connaît ce tableau, il suffit de mettre les kanjis côte à côte pour construire les nombres. Une différence réside néanmoins dans le fait que l'on regroupe les chiffres par quatre et non par trois.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Nombre de Fermatthumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.