GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Droite (mathématiques)En géométrie, le mot droite désigne un objet formé de points alignés. Une droite est illimitée des deux côtés, et sans épaisseur (dans la pratique, elle est représentée, sur une feuille, par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur — celle du crayon). Pour les Anciens, la droite était un concept « allant de soi », si « évident » que l'on négligeait de préciser de quoi l'on parlait. L'un des premiers à formaliser la notion de droite fut le Grec Euclide dans ses Éléments.
Droite à l'infiniDans le plan projectif, il est possible de définir un plan affine en choisissant une droite projective quelconque, que l'on appelle alors droite à l'infini associée à ce plan affine. Deux droites affines strictement parallèles correspondent à deux droites projectives qui s'intersectent en un point situé sur la droite à l'infini, dit point à l'infini. Réciproquement, il est toujours possible de compléter un plan affine par une droite à l'infini de façon à obtenir un plan projectif, dit complété projectif de ce plan affine.
Grand cercleEn géométrie, un grand cercle est un cercle tracé à la surface d'une sphère qui a le même diamètre qu'elle. De manière équivalente, on peut définir un grand cercle comme un cercle tracé sur la sphère ayant le même centre que la sphère ; ou encore, comme l'intersection entre une sphère et un plan passant par le centre de cette sphère ; ou comme un cercle tracé sur la sphère de longueur maximale. Par exemple, que l'on modélise le globe terrestre par une sphère ou que l'on considère l'ellipsoïde, dans ces deux cas l'équateur est un grand cercle.
Géométrie affinevignette|Géometrie affine La géométrie affine est la géométrie des espaces affines : il s'agit grossièrement d'ensembles de points définis par des propriétés spécifiques permettant de parler d'alignement, de parallélisme, d'intersection. Les notions de longueur et d'angle lui sont toutefois étrangères : elles dépendent de structures supplémentaires, traitées dans le cadre de la géométrie euclidienne. Dissocier les notions propres à la géométrie affine est récent dans l'histoire des mathématiques.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Segment (mathématiques)vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
Géométrie elliptiqueUne géométrie elliptique est une géométrie non euclidienne. Les axiomes sont identiques à ceux de la géométrie euclidienne à l'exception de l'axiome des parallèles : en géométrie elliptique, étant donné une droite et un point extérieur à cette droite, il n'existe aucune droite parallèle à cette droite passant par ce point. Il est équivalent de dire que la somme des angles d'un triangle est toujours supérieure à .
János BolyaiJános Bolyai (, Kolozsvár - , Marosvásárhely) est un mathématicien hongrois, l'un des pères de la géométrie non euclidienne. Bolyai naît en 1802 dans le Grand-duché de Transylvanie à Kolozsvár (aujourd'hui Cluj-Napoca en Roumanie), alors partie intégrante de l'empire d'Autriche. Son père, Farkas Bolyai, est lui-même un mathématicien reconnu, ami de Gauss et s'occupe de son éducation. János, à 13 ans, maîtrise déjà la mécanique analytique, son père s'occupant de son éducation. Sa mère est Zsuzsanna Benkő de Árkos.