Réflexion (mathématiques)En mathématiques, une réflexion ou symétrie axiale du plan euclidien est une symétrie orthogonale par rapport à une droite (droite vectorielle s'il s'agit d'un plan vectoriel euclidien). Elle constitue alors une symétrie axiale orthogonale. Plus généralement, dans un espace euclidien quelconque, une réflexion est une symétrie orthogonale par rapport à un hyperplan, c'est-à-dire à un sous-espace de codimension 1. En dimension 3, il s'agit donc d'une symétrie orthogonale par rapport à un plan.
LosangeUn losange est un quadrilatère dont les côtés ont tous la même longueur, ou encore un parallélogramme ayant au moins deux côtés consécutifs de même longueur. Il était anciennement appelé rhombe du grec ρόμβος (et porte toujours un nom tiré de cette étymologie dans de nombreuses langues, comme rhombus en anglais ou encore rombo en espagnol et en italien). L'adjectif qui lui est relatif est rhombique.
Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
ParallélogrammeEn géométrie, un parallélogramme est un quadrilatère dont les segments diagonaux se coupent en leur milieu. En géométrie purement affine, un quadrilatère (ABCD) est un parallélogramme (au sens défini en introduction) si et seulement s'il satisfait l'une des propriétés équivalentes suivantes : les vecteurs et sont égaux ; les vecteurs et sont égaux. Si de plus les quatre sommets sont trois à trois non alignés, ces propriétés sont aussi équivalentes à la suivante : les côtés opposés sont parallèles deux à deux, c'est-à-dire : (AB) // (CD) et (AD) // (BC).
Prisme (solide)Un prisme est un solide géométrique délimité par deux polygones, appelés les bases du prisme, images l'un de l'autre par une translation. Ces bases sont reliées entre elles par des parallélogrammes. Quand ces parallélogrammes sont des rectangles, on dit que le prisme est droit. En géométrie affine, un prisme est un cas particulier de polyèdre. C'est un cylindre dont la base est polygonale. vignette|Prisme triangulaire. Une droite (d) de direction constante se déplaçant le long d'un polygone (p) décrit une surface appelée surface prismatique de polygone directeur (p) et de génératrice (d).
Système cristallinUn 'système cristallin' est un classement des cristaux sur la base de leurs caractéristiques de symétrie, sachant que la priorité donnée à certains critères plutôt qu'à d'autres aboutit à différents systèmes. La symétrie de la maille conventionnelle permet de classer les cristaux en différentes familles cristallines : quatre dans l'espace bidimensionnel, six dans l'espace tridimensionnel. Une classification plus fine regroupe les cristaux en deux types de systèmes, selon que le critère de classification est la symétrie du réseau ou la symétrie morphologique.
Domaine fondamentalGiven a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral.
RectangleEn géométrie, un rectangle est un quadrilatère dont les quatre angles sont droits. Un quadrilatère est un polygone (donc une figure plane) constitué de quatre points (appelés sommets) et de quatre segments (ou côtés) liant ces sommets deux à deux de manière à délimiter un contour fermé. Fichier:Six Quadrilaterals.svg|Quadrilatères. Les deux situés en haut à gauche (vert et marron) sont des rectangles. Fichier:Rectangle 2.svg|Un rectangle, ses deux diagonales et un [[angle droit]] codé.
Groupe de friseUn groupe de frise, en mathématiques, est un sous-groupe du groupe des isométries affines du plan euclidien tel que l'ensemble des translations qu'il contient forme lui-même un groupe isomorphe au groupe Z des entiers relatifs. Une frise est alors une partie du plan telle que l'ensemble des isométries qui la laissent globalement invariante est un groupe de frise. Usuellement, une frise est représentée par un motif se répétant périodiquement dans une direction donnée. Ce concept modélise les frises utilisées en architecture ou en décoration.