Lemoine pointIn geometry, the Lemoine point, Grebe point or symmedian point is the intersection of the three symmedians (medians reflected at the associated angle bisectors) of a triangle. Ross Honsberger called its existence "one of the crown jewels of modern geometry". In the Encyclopedia of Triangle Centers the symmedian point appears as the sixth point, X(6). For a non-equilateral triangle, it lies in the open orthocentroidal disk punctured at its own center, and could be any point therein.
Coordonnées trilinéairesEn géométrie, les coordonnées trilinéaires d'un point relativement à un triangle donné, notées (x : y : z) sont, à une constante multiplicative strictement positive près, les distances algébriques relativement aux côtés (étendus) du triangle. Pour un triangle ABC, le rapport x / y est le rapport des distances algébriques du point aux côtés (BC) et (AC) respectivement et ainsi de suite par permutation sur A, B, C.
Cercle circonscritEn géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, c'est-à-dire situés sur un même cercle. Si le polygone n'est pas aplati, ce cercle est unique et son centre est le point de concours des médiatrices des côtés. Un polygone n'a pas nécessairement de cercle circonscrit, mais les triangles, les rectangles et les polygones réguliers sont tous inscriptibles.
Droite d'Eulervignette|Droite d'Euler en rouge, médianes en orange, médiatrices en vert, et hauteurs en bleu. Le point rouge est le centre du cercle d'Euler. En géométrie euclidienne, dans un triangle non équilatéral, la droite d'Euler est une droite passant par plusieurs points remarquables du triangle, dont l'orthocentre, le centre de gravité (ou isobarycentre) et le centre du cercle circonscrit. Cette notion s'étend au quadrilatère et au tétraèdre.
IncenterIn geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.
CentroïdeEn mathématiques, le centre de masse ou centroïde d’un domaine du plan ou de l’espace est un point d’équilibre pour une certaine mesure sur ce domaine. Il correspond au centre pour un cercle ou une sphère, et plus généralement correspond au centre de symétrie lorsque le domaine en possède un. Mais son existence et son unicité sont garanties dès que le domaine est de mesure finie. En géométrie, cette notion est synonyme de barycentre (pour un ensemble fini de points affectés de masses ponctuelles, le centre de masse est le barycentre des points pondérés).
Centre du triangleEn géométrie plane, la notion de centre du triangle est une notion qui généralise celle de centre d'un carré ou d'un cercle. Certains points remarquables du triangle, comme le centre de gravité, le centre du cercle circonscrit, le centre du cercle inscrit et l'orthocentre sont connus depuis la Grèce antique et constructibles simplement. Chacun de ces centres classiques a la propriété d'être invariant (plus précisément équivariant) par similitudes.
Centre du cercle d'EulerEn géométrie, le centre du cercle d'Euler, ou centre des neuf points est un centre du triangle, un point d'un triangle plat qui ne dépend que de l'existence du triangle. Son nom vient du fait qu'il s'agit du centre du cercle d'Euler ou cercle des neuf points, qui passe par neuf points caractéristiques du triangle : les milieux des trois côtés, les pieds des trois hauteurs et les points milieux entre les sommets et l'orthocentre. Le centre du cercle d'Euler est référencé par X(5) dans l'Encyclopedia of Triangle Centers de Clark Kimberling.
Hauteur d'un triangleEn géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
SimplexeEn mathématiques, et plus particulièrement en géométrie, un simplexe est une généralisation du triangle à une dimension quelconque. En géométrie, un simplexe ou n-simplexe est l'analogue à n dimensions du triangle. Il doit son nom au fait que c'est l'objet géométrique clos le « plus simple » qui ait n dimensions. Par exemple sur une droite (1 dimension) l'objet le plus simple à 1 dimension est le segment, alors que dans le plan (2 dimensions) l'objet géométrique clos le plus simple à 2 dimensions est le triangle, et dans l'espace (3 dimensions) l'objet géométrique clos le plus simple à 3 dimensions est le tétraèdre (pyramide à base triangulaire).