Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles de séries chronologiques, en mettant l'accent sur les processus autorégressifs, y compris le bruit blanc, AR(1) et MA(1), entre autres.
Explore les modèles de choix binaires comme probit et logit, ainsi que l'analyse de séries temporelles univariées avec les modèles ARIMA pour la prévision des variables économiques.
Couvre l'estimation paramétrique, la modélisation saisonnière, les méthodes Box-Jenkins, les calculs de variance et les mesures de dépendance dans l'analyse des séries chronologiques.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les polynômes caractéristiques inverses, les équations Yule-Walker et les autocorrelations.
Couvre Vector Autoregression (VAR) dans l'analyse des séries chronologiques, y compris les propriétés d'échantillonnage et des exemples de processus VAR.
Couvre la sélection des modèles, les diagnostics et les prévisions dans lanalyse des séries chronologiques, en mettant laccent sur les défis de déterminer lordre du modèle basé sur les fonctions dautocorrélation et dautocorrélation partielle.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les équations de Yule-Walker et la représentation spectrale.