Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Espace séparableEn mathématiques, et plus précisément en topologie, un espace séparable est un espace topologique contenant un sous-ensemble dense et au plus dénombrable, c'est-à-dire contenant un ensemble fini ou dénombrable de points dont l'adhérence est égale à l'espace topologique tout entier. espace à base dénombrable Tout espace à base dénombrable est séparable. La réciproque est fausse, mais : Tout espace pseudométrisable séparable est à base dénombrable.Beaucoup d'espaces usuels sont de ce type.
Topologie de la droite réellethumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
Espace uniformeEn mathématiques, la notion d'espace uniforme, introduite en 1937 par André Weil, est une généralisation de celle d'espace métrique. Une structure uniforme est une structure qui permet de définir la continuité uniforme. On peut y parvenir de deux manières différentes, l'une en généralisant la notion de distance, l'autre avec une axiomatique proche de celle des espaces topologiques. On montre que ces deux approches sont équivalentes. Un écart sur un ensemble est une application [0, +∞] telle que pour tout : (symétrie); (inégalité triangulaire).
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Fermé (topologie)En mathématiques, dans un espace topologique E, un fermé est un sous-ensemble de E dont le complémentaire est un ouvert. Toute réunion d'une famille finie de fermés est un fermé (y compris l'ensemble vide ∅, qui est — par définition — la réunion de la famille vide). Toute intersection d'une famille (finie ou infinie) de fermés est un fermé (y compris l'espace E tout entier, qui est — par convention dans ce contexte — l'intersection de la famille vide).
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Continuous functionIn mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is .