Clôture normale (théorie des groupes)En théorie des groupes, la clôture normale d'un sous-ensemble d'un groupe est le plus petit sous-groupe normal de contenant La clôture normale de dans est l'intersection de tous les sous-groupes normaux de contenant : Le sous-groupe est engendré par l'ensemble de tous les conjugués dans des éléments de On peut donc aussi écrire Tout sous-groupe normal est égal à sa clôture normale. La clôture normale de l'ensemble vide est le sous-groupe trivial.
Groupe trivialEn mathématiques, un groupe trivial est un groupe constitué du seul élément e. Tous les groupes triviaux sont isomorphes, c'est pourquoi on dit souvent le groupe trivial. L'opération de groupe est e + e = e. L'élément e est le neutre, et le groupe est abélien et même cyclique. On ne doit pas confondre le groupe trivial avec l'ensemble vide (qui n'a pas d'élément, donc pas d'élément neutre, si bien qu'il ne peut pas être un groupe). Le groupe trivial est « le » groupe cyclique d'ordre 1, noté C1.
ConoyauEn mathématiques, le conoyau d'un morphisme f : X → Y (par exemple un homomorphisme entre groupes ou bien un opérateur borné entre espaces de Hilbert) est la donnée d'un objet Q et d'un morphisme q : Y → Q tel que le morphisme composé soit le morphisme nul, et de plus Q est, en un certain sens, le plus "gros" objet possédant cette propriété. Souvent l'application q est sous-entendue, et Q est lui-même appelé conoyau de f. Les conoyaux sont les duaux des noyaux des catégories, d'où le nom.
SubobjectIn , a branch of mathematics, a subobject is, roughly speaking, an that sits inside another object in the same . The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory, and subspaces from topology. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a morphism that describes how one object sits inside another, rather than relying on the use of elements. The concept to a subobject is a .
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
ÉpimorphismeEn mathématiques, le terme « épimorphisme » peut avoir deux sens. 1) En théorie des catégories, un épimorphisme (aussi appelé epi) est un morphisme f : X → Y qui est simplifiable à droite de la manière suivante: g1 o f = g2 o f implique g1 = g2 pour tout morphisme g1, g2 : Y → Z. Suivant ce diagramme, on peut voir les épimorphismes comme des analogues aux fonctions surjectives, bien que ce ne soit pas exactement la même chose. Le dual d'un épimorphisme est un monomorphisme (c'est-à-dire qu'un épimorphisme dans une catégorie C est un monomorphisme dans la catégorie duale Cop).
Catégorie des groupes abéliensEn mathématiques, la catégorie des groupes abéliens est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes abéliens. La catégorie des groupes abéliens est la catégorie Ab définie ainsi : Les objets sont les groupes abéliens ; Les morphismes entre objets sont les morphismes de groupes. C'est donc une sous-catégorie pleine de la catégorie Grp des groupes. La catégorie des groupes abéliens s'identifie à la catégorie des modules sur : La catégorie Ab est monoïdale, et permet donc de définir une structure enrichie.
Noyau (théorie des catégories)La théorie des catégories est une théorie unificatrice des Mathématiques. La notion de noyau est une notion centrale en algèbre. Ici, le concept de noyau est un concept général applicable à de nombreuses branches des mathématiques abstraites. Considérons dans une catégorie deux flèches et de même source et de même but . Une flèche de but est dite noyau ou égalisateur du couple si elle vérifie les deux propriétés suivantes : (1) On a uk=vk (2) Pour toute flèche telle que l'on ait , il existe une flèche unique telle que .
Catégorie complèteEn mathématiques, une catégorie complète est une catégorie dans laquelle toutes les petites limites existent. Autrement dit, une catégorie C est complète si tout diagramme F : J → C (où J est petite) a une limite dans C. Duallement, une catégorie cocomplète est une catégorie dans laquelle toutes les petites colimites existent. Une catégorie bicomplète est une catégorie à la fois complète et cocomplète. L'existence de toutes les limites (même lorsque J est une classe propre) est trop forte pour être pertinente en pratique.
Morphisme zéroDans la théorie des catégories, une branche des mathématiques, un morphisme zéro est un type spécial de morphisme présentant certaines propriétés comme celles des morphismes vers et depuis un objet zéro . Supposons que C soit une catégorie, et f : X → Y un morphisme de la catégorie C. Le morphisme f est appelé morphisme constant (ou encore morphisme zéro à gauche) si pour tout objet W de la catégorie C et tout morphisme de cette catégorie , on a fg = fh.