Probabilité conditionnellevignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
Indépendance (probabilités)vignette|Paire de dés L'indépendance est une notion probabiliste qualifiant de manière intuitive des événements aléatoires n'ayant aucune influence l'un sur l'autre. Il s'agit d'une notion très importante en statistique et en théorie des probabilités. Par exemple, la valeur d'un premier lancer de dés n'a aucune influence sur la valeur du second lancer. De même, pour un lancer, le fait dobtenir une valeur inférieure ou égale à quatre n'influe en rien sur la probabilité que le résultat soit pair ou impair : les deux événements sont dits indépendants.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
Conditional independenceIn probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability without. If is the hypothesis, and and are observations, conditional independence can be stated as an equality: where is the probability of given both and .
Pairwise independenceIn probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies or equivalently, their joint density satisfies That is, the joint distribution is equal to the product of the marginal distributions.
Vecteur aléatoireUn vecteur aléatoire est aussi appelé variable aléatoire multidimensionnelle. Un vecteur aléatoire est une généralisation à n dimensions d'une variable aléatoire réelle. Alors qu'une variable aléatoire réelle est une fonction qui à chaque éventualité fait correspondre un nombre réel, le vecteur aléatoire est une fonction X qui à chaque éventualité fait correspondre un vecteur de : où ω est l'élément générique de Ω, l'espace de toutes les éventualités possibles. Les applications X, ...
Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Épreuve de Bernoullivignette|Le pile ou face est un exemple d'épreuve de Bernouilli. En probabilité, une épreuve de Bernoulli de paramètre p (réel compris entre 0 et 1) est une expérience aléatoire (c'est-à-dire soumise au hasard) comportant deux issues, le succès ou l'échec. L'exemple typique est le lancer d'une pièce de monnaie possiblement pipée. On note alors p la probabilité d'obtenir pile (qui correspond disons à un succès) et 1-p d'obtenir face. Le réel p représente la probabilité d'un succès.