Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore Kernel Ridge Regression, le Kernel Trick, Représenter Theorem, dispose d'espaces, matrice du noyau, prédiction avec les noyaux, et la construction de nouveaux noyaux.
Explore la factorisation matricielle dans les systèmes de recommandation, couvrant l'optimisation, les mesures d'évaluation et les défis liés à la mise à l'échelle.
Explore l'optimisation robuste en radiothérapie, en mettant l'accent sur l'optimisation de la dose et les compromis entre les solutions nominales et robustes.
Couvre les questions pratiques et les objectifs de l'apprentissage profond, y compris les types de neurones, l'architecture du réseau, l'optimisation et l'initialisation du poids.
Explore l'optimisation robuste dans la radiothérapie et les machines vectorielles de soutien, en mettant l'accent sur les scénarios les plus défavorables et l'utilisation de règles de décision linéaires.