Concept

Algèbre des parties d'un ensemble

Concepts associés (16)
Symmetric difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is . The symmetric difference of the sets A and B is commonly denoted by or The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse.
Algèbre de Boole (logique)
Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Loi d'absorption
En algèbre, la loi d'absorption est une identité reliant deux lois de composition interne. Deux lois de composition interne et vérifient la loi d'absorption si : Soit un ensemble muni de deux lois de composition interne et . Si ces lois sont commutatives, associatives et vérifient la loi d'absorption, la structure algébrique résultante est un treillis.
Univers (logique)
En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.
Algèbre d'ensembles
Le concept intervient dans l'exposition des bases de la théorie de la mesure, sous des noms assez variés dans les sources en français : outre algèbre d'ensembles, et sa variante corps d'ensembles, on trouve aussi algèbre de Boole de parties, ou plus brièvement algèbre de Boole, voire simplement algèbre, et encore anneau booléen unitaire ou clan unitaire. Cette définition évoque celle d'une tribu ; en les rapprochant on constate immédiatement qu'un ensemble de parties d'un ensemble est une tribu si et seulement si c'est une algèbre d'ensembles stable par réunion dénombrable.
Relation (mathematics)
In mathematics, a binary relation on a set may, or may not, hold between two given set members. For example, "is less than" is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1
Algèbre de Boole (structure)
vignette|Exemple d'algèbre de Boole : l'ensemble des parties de l'ensemble {x, y, z} illustré par son diagramme de Hasse. En mathématiques, une algèbre de Boole, ou parfois anneau de Boole, est une structure algébrique étudiée en particulier en logique mathématique. Une algèbre de Boole peut être définie soit comme une structure ordonnée particulière, soit comme une structure algébrique particulière, soit comme un anneau (unitaire) dont tout élément égale son carré.
Complémentaire (théorie des ensembles)
En mathématiques, et plus particulièrement en théorie des ensembles, le complémentaire d'une partie d'un ensemble est constitué de tous les éléments de n'appartenant pas à . Le complémentaire de est . En cas de risque de confusion, si l'on veut préciser que l'on parle du complémentaire de dans , on note . Si est différent de l'ensemble vide et de , alors et forment une partition de l'ensemble . Lorsque est un ensemble fini, la somme des cardinaux de et est égale au cardinal de : D'où on déduit : Exemple Pour dénombrer les absents dans une assemblée prévue de cinquante personnes, il suffit de compter les présents.
Tribu (mathématiques)
En mathématiques, une tribu ou σ-algèbre (lire sigma-algèbre) ou plus rarement corps de Borel sur un ensemble X est un ensemble non vide de parties de X, stable par passage au complémentaire et par union dénombrable (donc aussi par intersection dénombrable). Les tribus permettent de définir rigoureusement la notion d'ensemble mesurable. Progressivement formalisées pendant le premier tiers du , les tribus constituent le cadre dans lequel s'est développée la théorie de la mesure.
Involution (mathématiques)
En mathématiques, une involution est une application bijective qui est sa propre réciproque, c'est-à-dire par laquelle chaque élément est l'image de son image. C'est le cas par exemple du changement de signe dans l'ensemble des nombres réels, ou des symétries du plan ou de l'espace en géométrie euclidienne. En algèbre linéaire, les endomorphismes involutifs sont d'ailleurs appelés symétries. Des involutions apparaissent dans de nombreux domaines des mathématiques, notamment en combinatoire et en topologie.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.