Anneau principalvignette|Schéma heuristique des structures algébriques. Les anneaux principaux forment un type d'anneaux commutatifs important dans la théorie mathématique de la divisibilité (voir aussi l'article anneau principal non commutatif). Ce sont des anneaux intègres auxquels on peut étendre deux théorèmes qui, au sens strict, concernent l'anneau des entiers relatifs : le théorème de Bachet-Bézout et le théorème fondamental de l'arithmétique. Un anneau A est dit commutatif lorsque, pour tous éléments a et b de A, .
Idéal principalEn mathématiques, plus particulièrement dans la théorie des anneaux, un idéal principal est un idéal engendré par un seul élément. Soit A un anneau. Un idéal à droite I est dit principal à droite s'il est égal à l'idéal à droite engendré par un élément a, c'est-à-dire si I = aA := { ax | x ∈ A }. Un idéal à gauche I est dit principal à gauche s'il est égal à l'idéal à gauche engendré par un élément a, c'est-à-dire si I = Aa := { xa | x ∈ A }.
Richard DedekindJulius Wilhelm Richard Dedekind (né le à Brunswick et mort le dans la même ville) est un mathématicien allemand et un proche disciple de Ernst Kummer en arithmétique. Pionnier de l'axiomatisation de l'arithmétique, il a proposé une définition axiomatique de l'ensemble des nombres entiers ainsi qu’une construction rigoureuse des nombres réels à partir des nombres rationnels (méthode des « coupures » de Dedekind).
Nombre irrationnelUn nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
Entier d'Eisensteinthumb|Les entiers d'Eisenstein sont les points d'intersection d'un treillis triangulaire dans le plan complexe. En mathématiques, les 'entiers d'Eisenstein', nommés en l'honneur du mathématicien Gotthold Eisenstein, sont les nombres complexes de la forme où a et b sont des entiers relatifs et est une racine cubique primitive de l'unité (souvent autrement notée j). Les entiers d'Eisenstein forment un réseau triangulaire dans le plan complexe. Ils contrastent avec les entiers de Gauss qui forment un réseau carré dans le plan complexe.
Racine d'un nombreEn mathématiques, une racine n-ième d'un nombre a est un nombre b tel que b = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n. Pour un nombre réel a positif, il existe un unique réel b positif tel que b = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a) et se note avec le symbole radical () ou a.
Polynôme unitaireEn algèbre commutative, un polynôme unitaire, ou polynôme monique, est un polynôme non nul dont le coefficient dominant (le coefficient du terme de plus haut degré) est égal à 1. Un polynôme P est donc unitaire si et seulement s'il s'écrit sous la forme Sur les polynômes unitaires à coefficients dans un anneau commutatif A donné, la relation divise est une relation d'ordre partiel. Si A est un corps, alors tout polynôme non nul est associé à un polynôme unitaire et un seul.
Théorème des unités de DirichletEn théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps Q des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang où r désigne le nombre de morphismes de K dans R et r le nombre de paires de morphismes conjugués de K dans C à valeurs non toutes réelles.
Prime elementIn mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. An element p of a commutative ring R is said to be prime if it is not the zero element or a unit and whenever p divides ab for some a and b in R, then p divides a or p divides b.
Gras de tableau noirvignette|Un exemple de lettres en gras de tableau noir. Le gras de tableau noir ou du tableau noir, ou encore lettres ajourées ou lettres double barre ou blackboard gras, est un style de fonte de caractères où l’on retrouve certaines lettres avec une barre, oblique ou verticale, en double. Elle est régulièrement utilisée dans les textes de mathématiques et de physique. Les symboles décrivent généralement des ensembles de nombres. TeX, le logiciel le plus utilisé pour produire des textes mathématiques, ne possède pas cette fonte de caractères, mais l'AMS fournit le jeu de caractères.