Concepts associés (21)
Espace affine
En géométrie, la notion d'espace affine généralise la notion d'espace issue de la géométrie euclidienne en omettant les notions d'angle et de distance. Dans un espace affine, on peut parler d'alignement, de parallélisme, de barycentre. Sous la forme qui utilise des rapports de mesures algébriques, qui est une notion affine, le théorème de Thalès et le théorème de Ceva sont des exemples de théorèmes de géométrie affine plane réelle (c'est-à-dire n'utilisant que la structure d'espace affine du plan réel).
Trois dimensions
Trois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Espace projectif
En mathématiques, un espace projectif est le résultat d'une construction fondamentale qui consiste à rendre homogène un espace vectoriel, autrement dit à raisonner indépendamment des proportionnalités pour ne plus considérer que des directions. Par exemple, l'espace projectif réel de dimension n, P(R),ou RPn, est l'ensemble des droites vectorielles ou des directions de R ; formellement, c'est le quotient de R{0} par la relation d'équivalence de colinéarité. On peut munir ces espaces projectifs de structures additionnelles pour en faire des variétés.
Géométrie projective
En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Géométrie affine
vignette|Géometrie affine La géométrie affine est la géométrie des espaces affines : il s'agit grossièrement d'ensembles de points définis par des propriétés spécifiques permettant de parler d'alignement, de parallélisme, d'intersection. Les notions de longueur et d'angle lui sont toutefois étrangères : elles dépendent de structures supplémentaires, traitées dans le cadre de la géométrie euclidienne. Dissocier les notions propres à la géométrie affine est récent dans l'histoire des mathématiques.
Space (mathematics)
In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Normale (géométrie)
En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point. Une convention fréquente pour les surfaces fermées est de particulariser un vecteur normal unitaire, vecteur de norme 1 et orienté vers l'extérieur.
Droite (mathématiques)
En géométrie, le mot droite désigne un objet formé de points alignés. Une droite est illimitée des deux côtés, et sans épaisseur (dans la pratique, elle est représentée, sur une feuille, par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur — celle du crayon). Pour les Anciens, la droite était un concept « allant de soi », si « évident » que l'on négligeait de préciser de quoi l'on parlait. L'un des premiers à formaliser la notion de droite fut le Grec Euclide dans ses Éléments.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Application projective
En mathématiques, une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c'est-à-dire qui envoie les droites, plans, espaces... en des droites, plans, espaces. ➪ Fichier:France homographie (1).gif Une application projective bijective s'appelle une homographie. Rappelons que la définition moderne d'un espace projectif est d'être un ensemble dont les points sont les droites vectorielles d'un -espace vectoriel .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.