Couvre la représentation de Weil, les opérateurs Heis, le théorème Stone-Neumann, les opérateurs unitaires, la structure algèbre de Lie et la forme symlectique.
Explore la correspondance McKay, les groupes de Coxeter et les sous-groupes finis de SU(2) et SO(3, en mettant l'accent sur les propriétés d'ordre impair et les constructions du système racinaire.
Explore la relativité d'Einstein, le groupe de Lorentz et les transformations de Poincaré, en mettant l'accent sur les composants propres et non orthochronos.
Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.