Conception de robot informatique: Simulation et contrôle différenciés
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'apprentissage et le contrôle adaptatif des robots, en mettant l'accent sur la réactivité en temps réel et la planification de parcours à l'aide de systèmes dynamiques.
Explore l'apprentissage et le contrôle adaptatif pour les robots, en mettant l'accent sur la modulation des systèmes dynamiques pour améliorer la stabilité et permettre le mouvement réactif.
Explore l'apprentissage et le contrôle adaptatif des robots à travers SEDS et LPV-DS, mettant l'accent sur la stabilité, la dynamique non linéaire et l'optimisation.
Explore les approches fondées sur les données pour améliorer la conception des robots, en mettant l'accent sur la conformité, les matériaux souples et les interactions complexes.
Explore l'évitement des obstacles en utilisant Dynamical Systems pour les robots, en se concentrant sur la modulation, les garanties de stabilité et la théorie de la contraction.
Explore les approches de mise en œuvre pour la modélisation dynamique des robots, en mettant l'accent sur les techniques d'optimisation et de simplification.
Couvre les exercices corrigés de l'examen 2020 dans le domaine de la robotique, y compris des sujets tels que la précision, la vitesse, les moteurs à courant continu, le rapport d'engrenage optimal, la dynamique des bras de robot, les encodeurs et la cinématique.
Explore la coopération des robots d'assistance à l'amélioration de la productivité des soins infirmiers et à la création d'une société dynamique d'ici 2050.
Explore la logique de la fonction neuronale, le modèle Perceptron, les applications d'apprentissage profond et les niveaux d'abstraction dans les modèles neuronaux.