Explore la réponse linéaire à base de martingale, la diffusion complexe et la relation Nyquist dans les systèmes stochastiques avec perturbation dépendante du temps.
Explore les concepts de base du mouvement brownien, des molécules aux cellules, y compris son histoire, son hypothèse contre sa description, la solution de Langevin et les méthodes de mesure du mouvement brownien.
Explore le concept de martingales et leur relation avec le mouvement brownien à travers des marches aléatoires simples symétriques et discute des résultats positifs potentiels de la crise actuelle.
Explore l'intégrabilité uniforme, les théorèmes de convergence et l'importance des séquences bornées dans la compréhension de la convergence des variables aléatoires.
Explore les temps d'arrêt dans les martingales et le mouvement brownien, en discutant des propriétés de convergence et de la forte propriété de Markov.
Couvre les équations différentielles stochastiques, l'accroissement Wiener, le lemma d'Ito, et l'intégration du bruit blanc dans la modélisation financière.