Contrôle multivariable : Prédicteur Kalman et estimateurs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Explore la convergence des réseaux neuronaux à travers l'adaptation des paramètres et l'alternance des regrets, en mettant l'accent sur l'événement NeurIPS 2023 à l'EPFL.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Explore le surajustement dans la régression polynomiale, en soulignant l'importance de la généralisation dans l'apprentissage automatique et les statistiques.
Couvre les bases du contrôle multivariable, y compris la modélisation du système, le contrôle de la température, et les stratégies optimales, soulignant l'importance d'envisager toutes les entrées et sorties simultanément.
Couvre le contrôle distribué optimal en utilisant Gradient Descent pour atteindre localement des contrôleurs optimaux dans les systèmes à grande échelle.