Passer au contenu principal
Graph
Search
fr
|
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Paires de Quillen et équivalences de Quillen : foncteurs dérivés
Graph Chatbot
Séances de cours associées (32)
Précédent
Page 1 sur 4
Suivant
Functeurs dérivés: Identité et Homotopie Catégories
Explore les functeurs dérivés dans les catégories de modèles, en se concentrant sur les catégories d'identité et d'homotopie.
Functeurs dérivés : deux lemmes techniques
Couvre deux lemmes techniques essentiels pour le théorème fondamental en algèbre homotopique.
Existence de functors dérivés à gauche: Partie 2
Conclut la preuve de l'existence de foncteurs dérivés à gauche et discute des foncteurs dérivés à gauche et à droite.
Équivalences
Explore les équivalences Quillen, en mettant l'accent sur la préservation des cofibrations et des cofibrations acycliques.
Théorie de l'homotopie des complexes de chaînes
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Propriétés élémentaires des catégories de modèles
Couvre les propriétés élémentaires des catégories de modèles, en mettant laccent sur la dualité entre les fibrations et les cofibrations.
Functors dérivés dans l'algèbre homotopique
Couvre le théorème fondamental de l'algèbre homotopique, des paires de Quillen et des foncteurs dérivés.
Théorie de l'homotopie des complexes de chaînes
Explore la théorie de l'homotopie des complexes de chaîne, en se concentrant sur les rétractions et les structures de catégorie de modèle.
Catégories de modèles et théorie de l'homotopie: Functorial Connections
Couvre la relation entre les catégories de modèles et les catégories dhomotopie à travers des foncteurs préservant les propriétés structurelles.
Catégorie Homotopie et Functors dérivés
Explore la catégorie homotopie des complexes de chaînes et la relation entre les quasi-isomorphismes et les équivalences homotopiques de chaînes.