Explore les espaces pseudo-euclides, mettant l'accent sur les isometries et les bases dans les espaces vectoriels avec des formes quadratiques non dégénérées.
Couvre la définition du produit scalaire, des propriétés, des exemples et des applications dans les espaces euclidiens, y compris l'inégalité Cauchy-Schwartz.
Introduit des méthodes itératives pour les équations linéaires, les critères de convergence, le gradient des formes quadratiques et les champs de force classiques dans les systèmes atomistiques complexes.
Explore les méthodes itératives pour les équations linéaires, y compris les méthodes Jacobi et Gauss-Seidel, les critères de convergence et la méthode du gradient conjugué.