Couvre Vector Autoregression (VAR) dans l'analyse des séries chronologiques, y compris les propriétés d'échantillonnage et des exemples de processus VAR.
Explore les méthodes de prévision de la demande, l'analyse des séries chronologiques, la prévision des tendances et l'application du modèle Holt-Hiver.
Couvre l'estimation paramétrique, la modélisation saisonnière, les méthodes Box-Jenkins, les calculs de variance et les mesures de dépendance dans l'analyse des séries chronologiques.
Explore l'analyse de séries temporelles univariées, couvrant la stationnarité, les processus ARMA, la sélection des modèles et les tests unitaires de racine.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les polynômes caractéristiques inverses, les équations Yule-Walker et les autocorrelations.
Explore les fondamentaux de l'analyse des séries chronologiques, y compris la stationnarité, les processus linéaires, la prévision et les aspects pratiques.
Explore les propriétés stochastiques et la modélisation des séries chronologiques, couvrant l'autocovariance, la stationnarité, la densité spectrale, l'estimation, la prévision, les modèles ARCH et la modélisation multivariée.