Explore l'intégrabilité uniforme, les théorèmes de convergence et l'importance des séquences bornées dans la compréhension de la convergence des variables aléatoires.
Explore la convergence en droit pour les variables aléatoires, y compris le théorème de Kolmogorov et les preuves basées sur les lemmes de probabilité.
Couvre les propriétés des espaces complets, y compris l'exhaustivité, les attentes, les incorporations, les sous-ensembles, les normes, l'inégalité de Holder et l'intégrabilité uniforme.